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ABSTRACT

The Kalman Filter has become ubiquitous in tracking and estimation. Many

estimation applications, especially those using low cost commercial of-the-shelf sensors

(COTS), are subject to a special type of measurement nonlinearity called censoring.

Censoring frequently takes the form of sensor saturation, occlusion regions, and limit-

of-detection. These forms of censoring are known as Tobit model Type 1 censoring.

Introduction of censored measurements into the Kalman filter results in biased esti-

mates of the underlying states. In this dissertation, we present the first formulation

of the Kalman filter capable of estimating state variables from censored data without

bias. We refer to this formulation as the Tobit Kalman filter.

Previous work on Kalman filtering with measurement nonlinearities or sensor

faults includes a Kalman filter for intermittent measurements, the particle filter, the

unscented Kalman filter (UKF) and the extended Kalman filter (EKF). Intermittent

measurement nonlinearity is similar to the censored measurement model; with the ex-

ception that censored data measurements are correlated with the state values. Previous

work for intermittent measurements in estimation reduces the Kalman filter to a linear

predictor when the measurement is missing. Use of either this formulation or a stan-

dard Kalman filter as an estimator in a censored data example will result in a biased

estimate of the state. The particle filter is able to estimate the state values when the

measurements are subject to censoring under certain cases, but comes with a substan-

tial computational burden. The UKF is a less computationally expensive approach

that proves to be non-robust when the measurements are near a censoring region. The

EKF suffers from an undefined Jacobian at the threshold itself, and the Jacobian is zero

in the censored region. On the other hand, the Tobit Kalman filter provides unbiased

recursive estimates of latent state variables in or near saturated regions. This results

x
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by properly accounting for the statistics in the Tobit model, and using them to adapt

the Kalman filter error terms and state measurement updates. The Tobit Kalman fil-

ter is completely recursive and computationally inexpensive while previous attempts at

Tobit based state estimators where not recursive and are not computationally feasible.

The many applications to the Tobit Kalman filter include MEMS sensor based

tracking with saturation, visual tracking with camera frame censoring and biological

measurements with limit of detection saturations. In addition to the theoretical work

for the Tobit Kalman filter, this dissertation discusses the applications of the Tobit

Kalman filter by presenting simulations.

xi



www.manaraa.com

Chapter 1

INTRODUCTION

In 1958, James Tobin discovered that the statistical relationship between house-

hold income and expediture is unique in that the data seemed to fit a linear model

mostly, but suffered from clustering of data points at a limiting value [1]. This data

clustered at the limiting value, the expediture representing the dependent variable,

is refered to as the censoring limit on the data. The data clustered at the censor-

ing limit has a unique property in that it does not represent a unique independent

variable through a linear operation, but otherwise represents the information that the

dependent variable lies within a certain region, the censored region. If censored data

is ignored or used in fitting the data to a linear model then the resulting model would

be biased.

Tobin’s household expenditure problem would typically start with developing

a model of this system, however, the existence of several points where certain people

would have income but no household expenditure cause a region specific nonlinearity.

To fix this, Tobin created the Tobit model [2], named from the fused titles of Tobin and

Probit models. This model introduced the idea of censoring as a piecewise nonlinearity

in the system model. Since then, the model has been used in other application of

economics including income vs inheritance [3]; wages of husbands and wives vs annual

days worked [4], technology perception vs adoption [5] and several more [6].

Censoring has been reinvented in biology in the field survival analysis [7] [8].

Survival analysis is a statistical approach used to follow patients over a long period.

More specifically, it is a way to model time to an event in biology and has also been

used as a measure of time to failure in reliability engineering [9] [10]. Survival analysis

has become an important tool in public health monitoring [11]. The basis of survival

1



www.manaraa.com

analysis is the survival function, which is stated as S(t) = P (t < T ), where P denotes

probability and T denotes time of death, failure etc. Censoring comes into the survival

model when the time of death is unknown but known to be after some date; this is

referred to as right censoring. This censoring occurs in long period experiments where

the patient will miss scheduled check up exams, or clinical trial follow ups [12]. An

analogous version of right censoring is left censoring; where the data contains a lower

limit. An example of left censoring is when public health data is not observed in children

before they have reached kindergarten. In this case where the age limit is known, the

ages are censored. However, if the age limits or thresholds of the uncensored regions

are unknown, we refer to this as truncation. An example of left truncation would be

if young patients are not observed until a certain age, or if some patients had passed

before that age then they will not be observed [13].

The censored data model developed independently in economics and biology. For

the remainder of this dissertation, the censored data model and terminology used will

be based on the Tobit model. The many Tobit models have application in engineering,

and are discussed briefly in Section 1.1. The most simplistic version of the Tobit Model

contains a latent variable y∗t , which linearly depends on βxt,

yt =

 y∗t , y∗t > τ

τ, y∗t ≤ τ
(1.1)

y∗t = βxt + ut (1.2)

where β ∈ R1×n is vector of constants, xt ∈ Rn×1 is the input vector at time t, yt is a

scalar output, and ut is a Gaussian random variable with zero mean and variance, σ2
u.

The value ut captures the measurement noise and is independent of both yt and xt. The

use of ordinary least squares to estimate β or σu from the output would be inconsistent

because the entire population of the dependent variable is not being observed.

Many methods have been devised to solve for the parameters of the Tobit

model, including Tobin’s original maximum likelihood estimator [2]. An analysis of

2
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this method and the consistency of the estimates is presented in [14]. In the engineer-

ing community, the Tobit model for measurements is referred to as a Wiener model.

Being a linear model followed by a static nonlinearity, the Wiener model is often used

to model sensor nonlinearities [15]. In [16], a recursive identification for a linear model

with known saturation nonlinearity is presented. However, when the output is cen-

sored, the identification update is halted because the input has driven the output to a

“slope zero“ region. If the recursive estimation is to converge quickly, the input must

be chosen to avoid this region.

The goal of the Tobit model is to estimate parameters of statistical data without

bias introduced by conventional methods. There exist many more methods to identify

Tobit model parameters and compute expectations of censored data sequences. [1,

14, 17–21]. These methods require knowledge of the entire measurement history. A

recursive estimator, such as the Kalman filter, has not previously been developed for

this type of measurement nonlinearity.

As discussed, censoring occurs often in engineering, science and social science;

and has been used to identify models given censored or truncated data. However,

despite many obvious examples of censored data in estimation and tracking, such as

in sensor measurements [22] or computer vision applications, the Tobit model has not

received much attention in the field of signal processing or control theory. In signal

processing and control theory, the Kalman filter [23] has become ubiquitous in tracking

and estimation. A Kalman filter is a recursive algorithm that operates on streams

of noisy input data to produce estimates of an underlying state. It is an optimal

estimate under certain assumptions of the noise distribution and system dynamics.

Many estimation applications where the Kalman filter is used, especially those using

low cost commercial of-the-shelf sensors (COTS), the input measurement are subject

to the same censoring that are found in economics via the Tobit model, and biology

via the survival function. In real-time control, censoring in embedded applications

frequently takes the form of limit-of-detection, occlusion region, or sensor saturation.

All of these forms, are referred to as Tobit model type 1 censoring [2]. When censored

3
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measurements are introduced into a linear model fit or estimation procedure such as

the standard Kalman filter, the resulting estimates of the underlying states are biased.

Much of the work in recursive estimation has been in loosening the assumptions

of the Kalman filter so it can be implemented in a wider range of applications. The

unscented Kalman filter (UKF), the extended Kalman filter (EKF) and the particle

filter are examples and can be applied to nonlinear systems [24]. Censoring induced

by a Tobit Model is a unique type of nonlinearity in that the nonlinearity is piecewise

linear but the slope of the output becomes zero in the censored region. Recursive

estimators have not been implemented for this unique case. Similar measurement

nonlinearities have been addressed by Kalman filtering, one being the case where the

measurements are intermittent. A formulation of the Kalman filter designed for the

intermittent measurement case is presented in [25, 26]. This formulation reduces to a

linear predictor when measurements are missing. The estimator in [25] provides the

minimum state error variance filter given all past observations and arrival sequences,

and is an improvement on Jump Least Square (JLS) theory [27] which gives a minimum

state error variance filter assuming only the observations and the knowledge of the

previous arrival. Both of these previous formulations relied on the assumption that

missed measurements were uncorrelated with the state value. The problem with this

solution in a censored measurement model is that the the assumptions are violated.

More specifically, the measurement is correlated to the state value as is it relates to

the threshold between censored and non censored regions, the measurement model and

the noise. Tobit model censoring may be formulated as an intermittent measurement

problem, but because the dropped measurements are correlated with the state values

the result estimates of the state are biased.

One attempt to solve the censored measurement problem was presented in [28].

This formulation treats the censored and non censored measurements differently, and

has a formulation that is not recursive (it requires knowledge of the entire history of

censored measurements); recursion is a major motivation for using a Kalman filter.

Another type of censoring studied in [29, 30] looks at the censoring in a distributed

4
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detection system. The censored data is either sent or not sent to a fusion center based

on its informativeness. This work [29,30] studies a different type of censoring from what

is considered here, but shows an improvement in performance by using the information

present in missing values, where the probability of missing values are correlated to

state values. It is proposed that by using the underlying model and the information

contained in a censored measurement, the state estimate can be improved.

Another difficulty in using a Kalman filter for censored measurements is that the

measurement noise is not Gaussian near the censoring region. For example, if the state

variable is a constant near the censored region, noise on the measurements causes some

of the measurements to be censored, and the standard Kalman filter produces a biased

estimate of the state. Past work designed estimators using the likelihood function that

accounts for state dependent Gaussian observation noise. The work in [31] generated

an iterative Kalman filter to solve the nonlinear least square problem according to the

likelihood function.

Censoring can be generalized as an output nonlinearity, and general output

nonlinearities can be addressed using the EKF, the UKF or the particle filter. With

censored measurements, the state-measurement equation has a sharp discontinuity at

the threshold value of the censoring region, which is a problem for the EKF because

the gradient does not exist at this discontinuity. The particle filter formulated for

partially observed Gaussian state space models is presented in [32]. Particle filters

are much more computationally expensive than an extended Kalman filter or linear

Kalman filter because they require the use of a weighted set of samples called particles

to generate the posteriori distribution, p(xk|y1:k). Furthermore, the sharp discontinuity

in the measurement model for censored data means that a large number of particles

are necessary to adequately model the system in this region. The UKF is a less com-

putationally expensive approach that proves to be non-robust when the measurements

are on or near censoring. The method described in this dissertation avoids the use of

numerical approximation methods such as the particle filter by directly computing the

5
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relevant posteriori distributions from the censored data measurement model. The re-

sulting filter has a similar computational burden to the standard Kalman filter, which

means it can be used in computation-limited environments such as embedded systems.

In this dissertation, the first formulation of the Kalman filter capable of estimating

state variables from censored data without bias is presented and referred to as the

Tobit Kalman filter.

1.1 Censored Data

The early work on Tobit models produced a classification scheme for censored

models. These classes define how the system is censored or truncated and gives the

ability to account for censoring that is dependent on other variables. The difference

between censoring and truncation is that a censored measurement model provides a

measurement when the measurement is in a censored region, while truncation provides

no measurement when the latent variable is within a censored region. In this section,

some common censoring models are developed. The Tobit model types are grouped

depending on the similarities in the likelihood functions [6]. In [21], the process for con-

structing likelihood functions for model parameter identification with several censoring

types is presented.

1.1.1 Tobit Type 1

Tobit Type 1 is referred to as the censored regression model, in the general case

the model is,

yt =


y∗t , τl < y∗t < τh

γl, y∗t ≤ τl

γh, y∗t ≥ τh

(1.3)

where τl → −∞, is defined as the ‘right censoring’ case and τh →∞, the ‘left censoring’

case.

6
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1.1.2 Tobit Type 2

The Tobit type 2 model, also referred to as a Heckman model [33], is similar to

type 1. The difference arrives in that the censoring of the latent variable is dependent

on another latent variable.

y(2)t =

 y(2)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.4)

1.1.3 Tobit Type 3

The combination of Tobit type 1 and 2 is a Tobit type 3 model.

y(1)t =

 y(1)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.5)

y(2)t =

 y(2)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.6)

1.1.4 Tobit Type 4

y(1)t =

 y(1)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.7)

y(2)t =

 y(2)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.8)

y(3)t =

 y(3)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.9)

1.1.5 Tobit Type 5

y(2)t =

 y(2)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.10)

7
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y(3)t =

 y(3)∗t , y(1)∗t > τ

τ, y(1)∗t ≤ τ
(1.11)

See [6] for a more in depth discussion on Tobit model types, solutions and

applications.

1.2 Bayesian Estimation

In the previous section, some common censored models were introduced. Here,

we introduce Bayesian statistics and its relation to estimation theory and censored

measurement models, see [34] for a more indepth discussion on Bayesian analysis.

Bayesian probability is a method of making inferences on distributions based

on evidence from correlated values. The Bayesian branch of probability is derived

from Bayes’ rule, Equation 1.12, which relates conditional probabilities, to marginal

probabilities. An application to the evidential probabilistic interpretation, or Bayesian

interpretation, is Bayes’ inference. Bayes’ inference updates the probability of a hy-

pothesis given evidence using Bayes’ rule.

P (A|B) =
P (B|A)P (A)

P (B)
(1.12)

Bayesian probability is used often in estimation theory, which uses a model

and measurements to predict, smooth, interpolate information. One might design an

estimator to smooth a noisy measurement, or estimate noise distributions on a signal

or estimate the phase or frequency of a sinusoidal signal. For example, the estimator

for a parameter θ from a measurement y might be written as,

θ̂ = θ̂(y) (1.13)

A loss function, L(θ, θ̂) defines the deviation from the true value. The expected value

of the loss function is defined as the Bayes risk. The values of θ̂ that minimizes the

Bayes risk, E(L(θ, θ̂)), is the Bayesian estimator with the E(L(θ, θ̂)) taken over the

prior probability distribution. The prior probability of θ is the distribution of the

8
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parameter θ before any evidence is taken into account, while the posterior probability

is the distribution conditioned on some evidence . In the cases in which the posterior

probability is given, P (θ|y), the estimate variance of θ might be minimized. The

estimate of θ using the posterior distribution is advantageous in application, assuming

P (θ|y) has a narrower distribution than P (θ).

State estimation is commonly used in the control of dynamical systems and

the Kalman filter is typically the algorithm that is employed. In the next section,

the Kalman filter will be derived begining using a Bayesian framework. The Bayesian

derivation of the Kalman filter can be found in several sources, including [35]. The

Kalman filter estimates the states of a hidden Markov model to minimize the mean

squared error estimate in xk given measurements yk. The Kalman filter is optimal

under certain assumptions, that will declared in the following sections.

1.2.1 Markov Model

Bayesian filtering and estimation [36, 37] will briefly be reviewed, along with

its relation to optimal estimation. The Bayesian filter under a Markov assumption

computes the state estimate x̂k of the true state xk at time k, given measurements yk.

The Markov assumption states,

P (xk|yk...y0, xk−1...x0) = P (xk|yk, xk−1) (1.14)

and the conditional probability of the measurements is,

P (yk|yk−1...y0, xk...x0) = P (yk|xk). (1.15)

A graphical representation of the hidden Markov assumption (HMA) is in Fig-

ure 1.1. The HMA is crucial to recursive state estimation because the state can be

estimated using only previous measurements and states.
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Figure 1.1: Block diagram of a hidden Markov chain

1.2.2 Sequential Bayesian Estimation

Recursive Bayesian estimation allows the Bayesian inference problem to be im-

plemented recursively for online estimation of parameters or states given measurements.

A recursive approach is necessary for control applications since the controller needs real

time information of the changing parameters or states. The process for sequential Bayes

estimation is to estimate the state given the process model (the state update), then to

update the state estimate given measurements (the measurement update).

Using the Chapman-Kolmogorov equation [38], which provides the prior prob-

ability density function of the state, the distribution of interest is

P (xk|y1:k−1) =

∫
P (xk|xk−1)P (xk−1|y1:k−1)dxk−1 (1.16)

where P (xk|y1:k−1) is the prior distribution and is defined by the dynamic model. This

is the state update step of the filter; the measurement update is,

P (xk|y1:k) =
P (yk|xk)P (xk|y1:k−1)

P (yk|y1:k−1)
(1.17)

10
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The likelihood is the measurement noise model P (yk|xk). The evidence is the

denominator of Equation 1.17, which is

P (yk|y1:k−1) =

∫
P (yk|xk)P (xk|y1:k−1)dxk (1.18)

and is often called the normalizing constant.

The prior, likelihood and the evidence are used to find the a posteriori proba-

bility. The recursive solution of Equations 1.16 and 1.17 is a conceptual solution made

less complicated with the Markov assumption. However, the relationship between xk

and yk will decide if an analytic solution is possible. If no analytic solution is possi-

ble, a sequential Monte Carlo method would work and approach the actual posterior

probability density as the number of Monte Carlo samples increases. In general, these

methods impose no restrictions on the model or noise distribution.

1.2.2.1 Loss Functions and Optimality Criteria

Optimal estimators are filters that meet certain criteria, for example, the mini-

mum of a loss function. The type of loss function or any other type of criteria defines

the optimality. There are several types of loss functions for estimation, in this section

we will review a couple common ones. For more information on optimal estimation

see [39].

In signal processing, the mean squared error (MSE) is a common measure that

defines the quality of the estimate. The minimum mean squared error (MMSE) refers

to an estimate that minimizes the quadratic function associated with the MSE. The

cost function for the MSE is,

E[‖xk − x̂k‖2|yk] =

∫
‖xk − x̂k‖2P (xk|yk)dxk (1.19)

The optimality criteria in this section has the states as unknown parameters; these

equations can also be formulated for parameter identification.
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The properties of the MMSE are that given the measurements yk the MMSE

estimate is,

x̂MMSE
k = E(xk|yk) (1.20)

The estimate is also unbiased,

E(x̂MMSE
k ) = E(E(xk|yk)) = E(x) (1.21)

The MSE cost function is minimized when the orthogonality principle is met,

meaning the estimate error is not correlated with the measurement. Being a necessary

and sufficient condition for optimality, the orthogonality principle is useful for finding

the MSE estimator. In mathematical terms the orthogonality principle states,

E((xk − x̂k)yk) = 0

E((xk − x̂k)) = 0
(1.22)

In the case where xk and yk values are jointly Gaussian the MMSE estimate is

a linear relation between the measurements and the states and can be written as,

E(x̂MMSE
k ) = ayk + b (1.23)

This is a consequence of summation of Gaussian functions and that xk and yk

can be collectively written as a multivariate normal distribution. Using the information

that the estimator in linear and Equations 1.22, the orthogonality principle may be

used to find the MMSE estimate.

Other possible optimality criteria include: Maximum a posteriori (MAP) or the

mode of the posterior distribution.

x̂MAP
k = argmax

xk

P (xk|yk)

= argmax
xk

P (yk|xk)P (xk)

P (yk)

= argmax
xk

P (yk|xk)P (xk)

(1.24)
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where the denominator is dropped because it is independent of xk. The advantage to

using the MAP estimate is that the estimation include prior and likelihood functions,

allowing the use of knowledge contained in various distributions. However, the posterior

distribution may be difficult to obtain in some applications, forcing the use of Monte

Carlo techniques to obtain the estimate. Even using a Monte Carlo approach to obtain

the MAP estimate can cause inadequate results when the posterior distribution is

multimodal. In the case where the posterior contains multiple peaks the MAP result

may not produce an accurate estimate.

Another optimality criteria is the maximum likelihood estimator (MLE),

x̂MLE
k = argmax

xk

P (yk|xk) (1.25)

When there are multiple measurements y0:k, then

x̂MLE
k = argmax

xk

∏N
k=1 P (yk|xk) (1.26)

Taking the logarithm of the likelihood function,
∏N

k=1 P (yk|xk), often provides

an analytic solution for the estimate which is identical to the MLE since the logarithm

is monotonically increasing.

x̂MLE
k = argmax

xk

∑N
k=1 log(P (yk|xk)) (1.27)

Taking the derivative of Equation 1.27 with respect to xk, and setting the result

equal to zero will find the values xk that maximize this function.

1.2.2.2 Optimal Measurement Update

Two types of Bayesian filtering are used in practice: batch processing which

uses all available data and sequential or recursive processing. The advantages to the

recursive approach is that only new data is analyzed sequentially, so there is no need

to store all past data. The criteria used here for recursive Bayesian filter is the MMSE,

which will require infinite memory and infinite computational power when the Markov
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assumption cannot be made. However, if the Markov assumption is applicable a solu-

tion can be derived to obtain recursive, optimal solution. The procedure for estimating

a state using a sequential Bayesian filter is to first perform a time update of the state

using a prediction or smoothing model, then a measurement update using a new mea-

surement. Let us define xk as the state we would like to estimate, x̄k is an estimate of

the state using the only the time update, yk is the measurement and ȳk is the estimate

of the measurement using x̄k. So the measurement model is as follows,

yk = Cxk (1.28)

ȳk = Cx̄k (1.29)

Where C ∈ Rmxn. To find the optimal estimate of xk we use the minimum mean

squared error criteria with a Gaussian assumption. The solution the the MSE criteria

is the expected value of the state using the posterior probability,

x̂k = E[xk|yk] (1.30)

And from Section 1.2.2.1 the solution to the MSE is linear when xk and yk are

jointly Gaussian, so we know that the solution is of the form,

E[xk|yk] = αyk + β (1.31)

The distributions of xk and yk are,

P (xk) =
1

(2π)1/2Σ
1/2
xx

exp(−(xk − x̄k)
2Σxx

) (1.32)

P (yk) =
1

(2π)1/2Σ
1/2
yy

exp(−(yk − ȳk)
2Σyy

) (1.33)

P (xk, yk) =
1

(2π)1/2Σ
1/2
xy

exp(−(yk − ȳk)
2Σxy

) (1.34)
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Where Σxx, Σyy, and Σxy, are the covariance matrices. Using Equation 1.31 and

finding the values of α and β that minimize the MSE cost function,

MSE(xk) = E(xk − E(xk|yk)) (1.35)

Will yield,

E(xk|yk) = x̄k + ΣxyΣyy
−1(yk − ȳk) (1.36)

And the covariance of the measurement update,

cov(xk − E(xk|yk)) = Σxx − ΣxyΣ
−1
yy ΣT

xy (1.37)

Where ȳk and x̄k are the mean values of the measurements and states respec-

tively. This solution is the optimal estimate of xk given that xk and yk are jointly

Gaussian. In the non-Gaussian case Equation 1.36 provides the best linear estimate.

The best linear estimate is proven with the orthogonality principle, which states that

there is no other linear estimator of xk that outperforms Equation 1.36.

1.2.3 Kalman Filter

In the previous sections we have introduced Bayesian probability theory, the

recursive Bayes filter and estimation optimality. The Kalman filter deviates from the

generic Bayesian interpretation by making some assumptions on the model [40]. The

recursion in equations 1.16 and 1.17 will result in the Kalman filter when the noise

on the measurement model and the process model are jointly Gaussian. To compute

the value of E(xk|yk) the Kalman filter computes the minimum mean squared error

estimate. Thus, the Kalman filter is optimal in the mean squared sense for Gaussian

distributions and is the best linear estimator when the noise is non-Gaussian. The

Kalman filter assumes the following linear model, with a Markov assumption on the

process equation:

xk = Axk−1 +Buk + wk

yk = Cxk + vk
(1.38)
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where the first equation represents the process model while the second equation rep-

resents the measurement model. The xk ∈ Rn×1 is the state vector, uk is the known

input and yk ∈ Rn×1 is the measurement vector. The A ∈ Rn×n is the state transition

matrix, B ∈ R1×n is the input matrix and C ∈ R1×n is the measurement state transi-

tion matrix. The wk and vk are Gaussian random vectors with zero mean, they have

covariance Q ∈ Rn×n and R ∈ Rn×n, respectively.

Q = E[wkw
T
k ] (1.39)

R = E[vkv
T
k ] (1.40)

the processes and measurement noise are mutually independent;

E[wlv
T
m] = 0 (1.41)

and the state and measurement noise are mutually independent;

E[xlv
T
m] = 0, E[xlw

T
m] = 0 (1.42)

The measurement and process noise are also time independent, so,

E[vlv
T
m] = σ2

vδ(l −m), E[wlw
T
m] = σ2

wδ(l −m) (1.43)

Where δ is the Kronecker delta function and σ2
v and σ2

w are the measurement

and process noise covariance. In general, the correlations of states and noise can be

represented as,

cov

(
wl

vl

x0

 ,

wm

vm

x0


)

=


Qδ(l −m) 0 0

0 Rδ(l −m) 0

0 0 P0

 (1.44)

Where P0 is the initial error covariance based off the initial condition and prior.

The notation for the state after a time update, the a priori estimate, and measurement
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update, the a posteriori estimate must be introduced. The state estimate at time k

after the time update is denoted as xk|k−1 with associated state error covariance,

Pk|k−1 = E[(xk − xk|k−1)[(xk − xk|k−1)T |yk−1] (1.45)

While the state estimate and state error covariance matrix is denoted as xk|k

and Pk|k = E[(xk − xk|k−1)[(xk − xk|k−1)T |yk]. The corresponding distributions of state

estimates are,

(xk|yk−1) ∼ N (xk|k−1, Pk|k−1) (1.46)

(xk|yk) ∼ N (xk|k, Pk|k) (1.47)

The time update step of the discrete Kalman filter is calculated using the process

model in Equation 1.38,

xk|k−1 = E(xk|yk−1) = AE(xk−1|yk−1) +Buk + wk = Axk−1|k−1 +Buk (1.48)

And the priori state error covariance,

Pk|k−1 = cov(xk|yk−1) = APk−1|k−1A
T +Qk (1.49)

Where uk has no variance because it is a known input.

Since the noise on the state and measurement are jointly Gaussian distributions,

Equation 1.36 and 1.37 updates the state estimate and the state error covariance. The

a posteriori estimate of the state and covariance are,

E(xk|yk−1) = xk|k−1 (1.50)

cov(xk|yk) = Pk|k (1.51)
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The measurement mean and covariance,

E(yk|yk−1) = CE(xk|yk−1) = Cxk|k−1 (1.52)

cov(yk|yk−1) = E(Cxk + vk−Cxk|k−1)(Cxk + vk−Cxk|k−1) = CPk|k−1C
T +Rk (1.53)

And the cross covariance of xk and yk,

E((xk − xk|k−1)(yk − Cxk|k−1)T |yk) = CPk|k−1 (1.54)

The complete measurement update is,

xk|k = xk|k−1 + CPk|k−1(CPk|k−1C
T +Rk)

T (yk − E(yk|yk))

Pk|k = Pk|k−1 − Pk|k−1C
T (CPk|k−1C

T +Rk)
TCP T

k|k−1

(1.55)

Where E(yk|yk) = Cxk|k−1 and Kk = CPk|k−1(CPk|k−1C
T +Rk)

T is the Kalman

gain.

1.3 Estimation of Censored Data

The Kalman filter presented in this Chapter is not able to provide optimal or

even unbiased estimates of the states when the measurements are censored. This is

because the assumptions for the Kalman filter are not met when the measurement

noise is censored. First, the measurement noise is not orthogonal to the state, meaning

the measurement noise is correlated to the state, more so near the censored region.

Secondly, the likelihood function of the censored distribution is flat when the state is

censored. See Chapter 3 for the censored measurement likelihood function.
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Chapter 2

CENSORED DATA IN STANDARD ESTIMATION

As discussed in Chaper 1, there exists many methods for estimation of nonlinear

systems. In this chapter, the performance of these algorithms when the measurement

model is the Tobit type 1 model is reviewed, but first, the performance of an estimator

using a linear approach is considered.

Censoring is usually not expected or not modeled as a nonlinearity in the sys-

tem. It can happen when an unusual disturbance causing sensor saturation or if a

sensor is calibrated to fit the dynamic range of the data acquisition device but the

measurement noise causes clipping. In these cases, a linear estimator produces biases.

For example, for inertial navigation devices the inertial measurement unit (IMU) is

calibrated in a laboratory environment for the conditions that are expected when used

in the field [41] [42] [43]. If, for some reason the conditions change or an unexpected

motion is observed with velocity, magnetic field or acceleration; the sensor may go

into saturation. Motivated by this problem, we will briefly illustrate the advantage

to including censoring in the dynamic model by using a Kalman filter to estimate a

constant value within the dynamic range of the sensor. Consider a stationary variable

with value 0.5. The measurement is subject to zero-mean Gaussian additive noise with

variance of 1, left censored at 0. This is Equation 1.38 with Cxk = .5 and vk ∼ N (0, 1).

The standard Kalman filter converges to the expected value of the censored

observation yk, or approximately 0.65, or a bias of almost 30% despite the fact that the

mean value is above the censoring limit. If we consider the alternative formulation of the

Kalman filter [25] [26], and treat the censored measurements as missing measurements,

then the filter converges to the expected value of 1.01, for a bias of over 100%. The

results of the two methods are shown in Figure 2.1.
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Figure 2.1: Comparison of linear state estimation with censored measurements using
the Kalman filter and the Kalman filter with intermittent measurements

The bias in both of these methods would propagate into the state estimate,

causing subsequent errors in a controller, or even instability. To obtain unbiased esti-

mate of the state, the Tobit model nonlinearity must be accounted for in the estimator.

There are many types of nonlinear estimator, all useful in wide ranges of applications

and designs.

There are several nonlinear estimators possible with censored measurement mod-

els. Of these approaches, the most computationally expensive but accurate would be

the particle filter [32]. However, the particle filter is difficult to implement when com-

putational power is limited, as in embedded systems. Other less expensive techniques

explored in this section are the EKF and the UKF [40] [44] [45] . Comparisons be-

tween the UKF and the EKF have been made in [46]. The EKF is the most widely

used alternative to the Kalman filter when the model is nonlinear [47]. The EKF uses

the Jacobian of the nonlinearity to update the state and measurement covariances.

Convergence is not guaranteed, the EKF will diverge when the linearized transform is
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not sufficiently accurate, so the performance varies with model type and state location.

The motivation behind creating the UKF [48–50] was to provide an alternative to the

EKF which would not suffer from the EKF convergence and linearization issues. The

UKF works by performing a statistical linearization around the state estimate, which

is meant to improve convergence.

2.1 The Extended Kalman Filter

The discrete-time EKF starts with the model,

xk = fk−1(xk, uk−1, wk−1)

yk = hk(xk, vk)

wk ∼ N (0, Qk)

vk ∼ N (0, Rk)

(2.1)

The fk−1 is assumed to be linear in our example, so fk−1(xk, uk−1, wk−1) =

Axk−1 + wk, the nonlinearity is restricted to the measurement model hk. Because of

this, the state update equations of Equation 2.1 are linear, the EKF is the same as

the linear Kalman filter state update equations and are optimal. See Chapter 1 for the

equations of Kalman filter update.

The correction step using available measurements is,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +MkRkM

T
k )−1

xk|k = xk|k−1 +Kk(yk − hk(xk, 0))

Pk|k = (I −KkHk)Pk|k−1

(2.2)

With,

Hk =
∂hk
∂x

∣∣
xk|k−1

Mk =
∂hk
∂v

∣∣
xk|k−1

In the censored region h(y∗k > τ, 0),
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∂hk
∂x

∣∣
xk|k−1

= Cxk|k−1

∂hk
∂v

∣∣
xk|k−1

= 1

In the region h(y∗k < τ, 0),

∂hk
∂x

∣∣
xk|k−1

= 0

∂hk
∂v

∣∣
xk|k−1

= 0

and is undefined at at the threshold, τ .

2.2 The Unscented Kalman Filter

The UKF is based on the unscented transform, which is a statistical linearization

approach using deterministic sigma points. The purpose of the unscented transform is

to better approximate mean and covariance through nonlinear transformations. Fur-

ther, in [51] [52], the argument is made that the unscented transform can approximate

discontinuities in the nonlinear function, which linearized methods cannot achieve.

The basic idea behind the unscented transform is that the distribution of a nonlinear

function is better approximated using deterministic set of sigma points, s, than to

approximate a nonlinear function by Taylor expansion. To define the UKF, the sigma

points must be defined, there are p+ 1 sigma points, with weights W (i) that satisfy,

p∑
i=0

W (i) = 1;W (i) ≥ 0 i = 0, 1, ..., p (2.3)

The set of points that satisfy the above condition include,

x(i) = x̂+ (
√
NΨx)

W (i) = 1
2N

x(i) = x̂− (
√
NΨx)

W (i+N) = 1
2N

(2.4)
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Where N is the length of the vector, x and Ψx is the covariance of x

Each point is sent through the nonlinear transform, here, h represents our mea-

surement model in Equation 2.1.

y(i) = h(x(i)) (2.5)

And the mean is taken as a weighted average,

ŷ =

p∑
i=0

W (i)y(i) (2.6)

The covariance is calculated in a similar matter, a weighted product of the mean

points corrected by the weighted average,

ΨUKF
y =

p∑
i=0

W (i)(y(i)− ŷ)(y(i)− ŷ)T (2.7)

In the censored measurements model, or any other type of piecewise measure-

ment model the sigma points may cause biased results in the output mean and covari-

ance near the discontinuity. For example, for the model,

y∗k = xk + vk vk ∼ N (0, q)

yk =

 y∗k, τ < y∗k

T, otherwise

(2.8)

We look at the unscented transform from xk to yk, where xk is the deterministic

input and yk is the output with additive noise and censoring at a lower limit τ . We will

show that the unscented transform only gives accurate measurement uncertainties when

the sigma points represent the discontinuity well or when they are far from a censored

region. For example, if we select sigma points such that N = 1, p = 3, the elements of

x̂ which will converge to the linear Kalman filter but be biased if τ < x(ilow), where

x(ilow) is the outermost sigma point and closest to the censored region. The effect of

the bias on the measurement error covariance and expected measurement will be,

BiasUKF = Φ(τ, ŷ, q) > ε (2.9)
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With the normal distribution represented by,

φ(x, µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2

Φ(x, µ, σ) = 1
σ
√

2π

∫ x
−∞ e

− (x′−µ)2

2σ2 dx′
(2.10)

where ε is a small value which represents tolerable measurement bias when censoring

is present [53]. In most applications where there is censoring the BiasUKF is always

present because the normal distribution extends from −∞ to +∞, but the effects are

minimal unless the expected measurement is near a censored region. The UKF will

provide a better measurement error covariance estimate when the sigma point span the

discontinuity. In Figure 2.2 we have the measurement uncertainty vs threshold limit

as given by the UKF in a case where measurement noise on the latent variable vk ∼

N (0, 1), and xk = 0, according to Equation 2.8. Because the tails of the distribution

are not represented, there exists large discontinuities at the locations of the sigma

points around the mean of the measurement.

The bias is caused by the tails of the noise distribution, however if the discon-

tinuity caused by censoring lies between sigma points there will also be a bias in the

measurement noise covariance. This issue will be mitigated if the number of sigma

point is increased, however, the estimate will not be consistent.

2.3 Particle Filter

Particle filter, or Bootstrap filtering is a sequential Monte Carlo technique that

estimates the posterior density function using a Bayesian recursive framework. A set

of weighted particles represent the sample distribution of the posterior density at each

time step. Using the weighted particles representing the posterior distribution, an

estimate can be made. The weights are the product of a recursive relation which we

will derive here, it turns out that they are updated based on the likelihood of the

observations given the particle location. The advantages to particle filtering is that

there are no restrictions on the system or observation model or their corresponding

distributions. The number of particles greatly effects the performance of the particle
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Figure 2.2: Measurement uncertainty as calculated by the UKF vs threshold limit
(τ)

filter but can also be the cause of severe computation burden. As the number of

particles increases the closer the estimator gets to providing the optimal estimate.

A disadvantage to the particle filter is that when applied to high dimensional

systems [54], the function updating the weights tends to collapse if the dimensionality

is high. This collapse of weights is an inherent problem with particle filtering and

occurs when the effective sample size representing the posterior gets too small. The

fix for the collapse of the sample weights is to re-sample the posteriori distribution,

applying one of the many different types of resampling techniques [55]. Another issue

associated with high dimensional systems is the design of the weight update function.

The weighting function for a single state is influenced by all observations, even when

the observations and states are mostly independent from each other. In this case, the

posteriori distribution calculated by the particle filter under estimates the uncertainty

in the states. To obtain good performance using a particle filter in higher order systems,
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the number of particles should increase exponentially with the systems size [54].

To find the recursive relation to estimate the state from a hidden Markov Model,

extending from Section 1.2.1,

P (x0:k|y1:k) =
P (yk|x0:k, y1:k)P (x0:k|y1:k)

P (yk|y1:k−1)

=
P (yk|x0:k, y1:k−1P (xk|x0:k−1, y1:k−1)P (x0:k−1|y1:k−1)

P (yk|y1:k−1)

=
P (yk|xk)P (xk|xk−1)P (x0:k−1|y1:k−1)

P (yk|y1:k−1)

∝ P (yk|xk)P (xk|xk−1)P (x0:k−1|y1:k−1)

(2.11)

The posterior density is represented by {xi0:k, w
i
0:k}

Np
i=1, which is a randomly

generated set. The xi0:k is the set of all states up to time k, and have weights wi0:k.

From this random set we can approximate the posterior density to be,

P (x0:k|y1:k) ≈
Np∑
i=1

wikδ(x0:k − xi0:k) (2.12)

The weights are chosen by an importance sampling method [56]. Importance

sampling is a technique for estimating statistics of an unknown distribution by using

a known distribution, see [57]. The idea behind importance sampling is that regions

in the probability distribution with high importance are given a higher weight. Using

importance sampling the weights in Equation 2.12 are equal to,

wik ∝
P (xi0:k|y1:k)

q(xi0:k|y1:k)
(2.13)

Where q is the importance density and is the density we are sampling from, while the

numerator in Equation 2.13 is referred to as the nominal distribution.

The distribution P (xi0:k|y1:k), is known, let xik ≈ q(xi0:k|y1:k), i = 1, ..., Np be the

samples that are generated, also known as the importance density. The importance

density is factorized as follows,

q(xk|y1:k) = q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1) (2.14)
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where the augmented state density function allows for q(xk|y1:k) to be estimated by

multiplying the estimating sample distribution by the new probability distribution,

q(xk|x0:k−1, y1:k). Using Equation 2.11 and 2.14 in Equation 2.12,

wik ∝
P (yk|xik)P (xik|xik−1)P (x0:k−1|y1:k−1)

q(xk|x0:k−1, y1:k)q(x0:k−1|y1:k−1)

= wik−1

P (yk|xk)P (xk|xk−1)

q(xk|x0:k−1, y1:k)

= wik−1

P (yk|xk)P (xik|xk−1)

q(xk|xk−1, yk)

(2.15)

where the weights are normalized,
∑Np

i wik = 1.

The optimal proposal distribution is,

q(xk|xk−1, yk) = P (xk|xk−1, yk) (2.16)

where the transition prior probability obtained from the dynamical or time update

model, Equation 2.17, is often used as the importance function.

q(xk|xk−1, yk) = P (xk|xk−1) (2.17)

The weight update in Equation 2.15 suffers from a degeneracy problem, which is

the collapse of particle weights onto one particle. The degeneracy problem is solved by

re-sampling the particles where particles with small weights are eliminated, replacing

them with particles that have higher weight. This is not done every iteration, but

done when the effective sample size falls below a predefined value. An estimate of the

effective size is,

Neff =
1∑Np

i=1(wik)
2
< NT (2.18)

where NT is the predefined limit.

The three filters described in this chapter are meant to work in broad applica-

tions of nonlinear systems. The Tobit Type 1 model is a unique system in that it is

linear when the measurements are not near a censoring region. As such, the censoring

27



www.manaraa.com

model can be viewed as a linear system followed by a static nonlinearity. In this ap-

plication, the noise term on the measurement is subject to nonlinear transformation,

so nonlinear estimator routines relying on yk = h(xk) + vk rather than yk = h(xk, vk)

will not be applicable. Because the Tobit Model has an underlying linear system, it is

proposed that there exists an approximate linear estimator. The next Chapter derives

this filter, using a single assumption on the predictability of censoring. Alternatively,

the particle filter performs the best for censoring systems though it has some disadvan-

tages including computational and convergence restraints, that will be discussed in the

simulation section. The EKF does not treat censoring as a smooth transition between

regions, resulting in an undefined Jacobian at the threshold limit while the UKF is

proven to be biased near the censoring region.
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Chapter 3

THE TOBIT KALMAN FILTER

In this Chapter we will derive the Tobit Kalman filter by first formulating the

problem as a linear system followed by the static, censoring nonlinearity. Then, the

Tobit model statistics will be used to find the innovation needed for the recursive

estimator, along with an analytic expression for the measurement variance. Finally,

the Tobit Kalman filter gain will be derived to complete the linear estimator.

3.1 Problem Formulation

To define the censoring problem consider the evolution of a scalar output state

sequence as,

xk = Axk−1 +Buk + wk−1

y∗k = Cxk + vk

yk =

 y∗k, y∗k > τ

τ, y∗k ≤ τ

(3.1)

xk ∈ Rn×1 is the state vector, uk is the scalar input and yk is the scalar measurement

. The A ∈ Rn×n is the state transition matrix, B ∈ Rn×1 is the input matrix and

C ∈ R1×n is the measurement vector. The wk and vk are Gaussian random vectors

with zero mean, they have covariance Q ∈ Rn×n and R = σ2, respectively, where σ

is the standard deviation of the measurement noise. The Kalman filter is optimal in

the Gaussian sense; however when the noise distribution on yk is a censored Gaussian,

the filter is suboptimal; and since the noise is correlated to the state value, there is

a violation of the assumptions of the Kalman filter. The closer the state is to the

threshold value the more censored the Gaussian distribution on yk becomes.
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3.2 Problem Formulation for the Tobit Case

Using Equation 3.1, we define yk as the censored observation and y∗k as the latent

variable. The probability distribution of a censored variable with normally distributed

noise is:

f(yk|xk) =
1

σ
φ(
yk − Cxk

σ
)u(yk − τ) + δ(τ − yk)Φ(

τ − Cxk
σ

) (3.2)

where

φ(
yk − Cxk

σ
) =

1√
2π
e−

(yk−Cxk)2

2σ2 (3.3)

and

Φ(
yk − Cxk

σ
) =

∫ yk

−∞

1√
2π
e−

(zk−Cxk)2

2σ2 dzk (3.4)

are the probability density function and the cumulative distribution function of a Gaus-

sian random variable whose mean is Cxk. δ is the Kronecker delta function. The u(α)

is a step function and is equal to u(α) = 1 when α ≥ 0 and u(α) = 0 when α < 0.

The delta function at τ − yk is present when measurements at the censoring limit

are recorded. The delta function is absent in a Tobit type 1 model that has missing

measurements when they are censored, this is referred to as the truncated model.

The likelihood function for the standard Tobit model is,

L =
∏
y∗k≤τ

[1− Φ(
Cxk − τ

σ
)]
∏
y∗k≥τ

σ−1φ(
yk − Cxk

σ
) (3.5)

as formulated by Tobin in his pioneering work [2].

The expected value of the measurements when uncensored is given by:

E(yk|yk > τ, xk, σ) = σ−1

∫ +∞

τ

z
φ( z−Cxk

σ
)

1− Φ( τ−Cxk
σ

)
dz

= Cxk + σλ((τ − Cxk)/σ)

(3.6)

this differs from the true value of the latent variable by a bias of σλ((τ−Cxk)/σ)

where λ(α) = φ(α)
[1−Φ(α)]

is the inverse Mills ratio (IMR) [14].
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The expected measured value when both uncensored and censored measure-

ments are included is:

E[yk|xk|k−1, σ] = P [yk > τ |xk|k−1, σ]E[yk|yk > τ, xk|k−1, σ]

+P [yk = τ |xk|k−1, σ]E[yk|yk = τ, xk|k−1, σ]

= Φ(Cxk−τ
σ

)[Cxk + σλ((τ − Cxk)/σ)] + Φ( τ−Cxk
σ

)τ

(3.7)

The variance of the expected measured value is derived in [58] and can be written

as:

V ar[yk|yk > τ, xk, σ] = E[y2
k|yk > τ, xk, σ]− [E[yk|yk > τ, xk, σ]]2 (3.8)

E[y2
k|yk > τ, xk, σ] = σ−1 1

1− Φ( τ−Cxk
σ

)

∫ +∞

τ

z2φ( z−Cxk
σ

)dz (3.9)

so

V ar[yk|yk > τ, xk, σ] = σ2[1− ð(
τ − Cxk

σ
)] (3.10)

where

ð( τ−Cxk
σ

) = λ( τ−Cxk
σ

)[λ( τ−Cxk
σ

)− ( τ−Cxk
σ

)] (3.11)

Note that V ar[yk|xk, σ] = V ar[yk|yk > τ, xk, σ] since V ar[yk|yk < τ, xk, σ] = 0.

3.3 Derivation of the Tobit Kalman Filter

The Bayesian derivation of the Kalman filter is found in [35]. The Bayesian

filter under a Markov assumption computes the state estimate x̂k, of the true state xk,

at time k given measurements yk. The Markov assumption states,

P (xk|yk...y0, xk−1...x0) = P (xk|yk, xk−1) (3.12)

and the conditional probability of the measurements is,

P (yk|yk−1...y0, xk...x0) = P (yk|xk) (3.13)

31



www.manaraa.com

For a Kalman filter we are interested in how the measurements are projected

on the state estimates and future state estimates. The distribution of interest is

P (xk|y1:k−1) =

∫
P (xk|xk−1)P (xk−1|y1:k−1)dxk−1 (3.14)

or is the predict step of the filter. The update state may be written as

P (xk|y1:k) =
P (yk|xk)P (xk|y1:k−1)

P (yk | y1:k−1)
(3.15)

The recursion in equations 3.14 and 3.15 will result in the Kalman filter when

the noise on the measurement model and the process model are jointly Gaussian. To

compute the value of E(xk|yk) the Kalman filter computes the minimum mean squared

error estimate which is,

x̂k = E(xk|yk) = x̄k +K(yk − ȳk) (3.16)

where ȳk and x̄k are the expected values of the measurements and states respec-

tively and K is the gain that updates state estimates with measurement error.

In the censored measurement model however the noise is a censored Gaussian in

the measurement equations, resulting in the distribution given by Equation 3.2. This

noise function results in a nonlinear relationship between the measurements and state

values, Equation 3.16 does not hold. In the next section, we develop an alternative up-

date schedule which recursively calculates E(xk|yk) for Tobit censored measurements.

3.3.1 The Tobit Kalman Filter

In Section 3.3 we have reviewed the basis of the Kalman filter using Bayes’ rule.

In this section we derive the Kalman formulation for Tobit censored measurements.

The derivation is similar to the derivation for the standard Kalman filter; however,the

censoring results in new definitions for the measurement residual, and consequently for

the optimal Kalman gain and the estimated state covariance. Below is the notation
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for our model with the state xk ∈ Rn×1, and yk ∈ Rm×1 being the measurement on

the system.

xk = Axk−1 + wk−1

y∗k = Cxk + vk

yk =

 y∗k, y∗k > T

T , y∗k ≤ T

(3.17)

The matrix A ∈ Rn×n is the state transition matrix, C ∈ Rm×n is the mea-

surement model and T ∈ Rm×1 is vector of threshold values. The noise wk and vk

are zero mean white Gaussian noise with covariance matrix Q ∈ Rn×n and R ∈ Rm×m

respectively.

3.3.2 The Predict Stage

The prior estimate of the state and it’s probability distribution may be written

P(xk|k−1|yk−1) ∼ N (E(xk|k−1),Var(xk|k−1)) (3.18)

where xk|k−1 ∈ Rn×1 is the state estimate vector of xk given all estimates and mea-

surements up to time k − 1. The predict equation of the state may be written as

E(xk|k−1|yk−1) = E(Axk−1|k−1 + wk) = Axk−1|k−1 (3.19)

xk−1|k−1is the estimate of xk−1. The state error covariance given measurements

and state information up to time k − 1 may be written as

cov(xk|k−1 − xk) = cov(Axk−1|k−1 + wk −Axk−1)

= AVar(xk−1|k−1)AT + Q

= AΨk−1|k−1AT + Q

(3.20)

where Q is the model covariance matrix and Ψk−1|k−1 is the previous a posteriori

estimate of the state error covariance.
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3.3.3 The Update Stage

The optimal Kalman filter must minimize the state error covariance, Ψk|k. The

update stage corrects the state estimate using current measurements. The update step

will reduce the state error covariance, whereas the predict step will result in a widening

of the state error covariance. The Kalman correction step to obtain the current estimate

given all observations up to time k may be written as

xk|k = xk|k−1 + Kk(yk − E(yk|xk,yk−1)) (3.21)

The value of E(yk) was calculated for a scalar case for a censored value in

Equation 3.7; in this notation E(yk|xk,yk−1) ∈ Rm×1 is a vector, denoted as E(yk) for

the rest of this section. Each scalar component of E(yk) can be censored at any given

time and will have different threshold limits T = [T (1), T (2), ..., T (m)] with T (l), yk(l)

representing the lth component of arrays T and yk respectively.

Kk in Equation 3.21 we minimize the state error covariance,

Ψk|k = cov(xk − xk|k)

= cov(xk − xk|k−1 −Kk(yk − E(yk)))
(3.22)

A Bernoulli random variable will be introduced to model the occurrence of a

censored measurements vs an actual measurement. The variable pk(l) = 1 when the

measurement is not censored and pk(l) = 0 when the measurement is equal to the

threshold value. The measurement model can be written as

pk(l) =

 1, Cxk(l) + vk(l) > T (l)

0, Cxk(l) + vk(l) ≤ T (l)
(3.23)

At any given time step the measurement will represent the state by Cxk(l)+vk(l)

with probability E(pk(l)). In matrix notation the Bernoulli random matrix will be

diagonal pk ∈ Rm×m so the measurements are given by,

yk = pk(Cxk + vk) + (Im×m − pk)T (3.24)
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where Im×m is is the identity matrix. Substituting into Equation 3.22 yields

Ψk|k = cov(xk − xk|k)

= cov(xk − xk|k−1 −Kk(pk(Cxk + vk)+

(Im×m − pk)T −E(yk)))

(3.25)

To simplify the notation in the derivation we set the Kalman error to

ỹk = pk(Cxk + vk) + (Im×m − pk)T −E(yk) (3.26)

so the covariance of the state estimate becomes

Ψk|k = E((xk − xk|k−1 −Kkỹk)(xk − xk|k−1 −Kkỹk)T)

= Ψk|k−1 − E((xk − xk|k−1)ỹT
k )KT

k

−KkE(ỹk(xk − xk|k−1)T) + KkE(ỹkỹT
k )KT

k

(3.27)

with

Ψk|k−1 = E((xk − xk|k−1)(xk − xk|k−1)T) (3.28)

Rx̃ỹk
= E((xk − xk|k−1)ỹT

k ) (3.29)

Rỹỹk
= E(ỹkỹT

k ) (3.30)

Next, we take the trace and the derivative of equation 3.27 and set the result

equal to zero to find the optimal Kalman gain.

Tr(Ψk|k) = Tr(Ψk|k−1)− 2Tr(Rx̃ỹk
KT

k )

+Tr(KkRỹỹk
KT

k )

d
dKk

Tr(Ψk|k) = −2Tr(Rx̃ỹk
) + 2Tr(KkRỹỹk

)

Kk = Rx̃ỹk
R−1

ỹỹk

(3.31)

which results in the familiar projection equation. In a standard linear Kalman filter

the values of Rx̃ỹ and Rỹỹ are functions of Ψ, H and R. Because our measurements
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are not linearly related to the state vector in or around a censored region we must

explicitly find values for Rx̃ỹ and Rỹỹ. The function for Rx̃ỹ is,

Rx̃ỹk
= E((xk − xk|k−1)((Cxk + vk)Tpk+T T(Im×m − pk)− E(yk)T))

= E(xkxT
k CTpk) + E(xkvT

k pk) + E(xkT T(Im×m − pk))

−E(xk)E(yk)T − E(xk|k−1xT
k CTpk)− E(xk|k−1vT

k pk)+

E(xk|k−1T T(Im×m − pk))− E(xk|k−1)E(yk)T

(3.32)

The probability of the measurement being non censored is a function of the

distance between the latent measured variable and the threshold value. The expected

value of pk(l, l) may be written as

E(pk(l, l)) = Φ(
Cxk(l)− T (l)

σ(l)
) (3.33)

Where Cxk(l) is the lth element of the measurement vector and σ(l) is the

variance of the noise on that element. In principle, this requires knowledge of the true

state value. The following assumption allows us to relax this dependence and use the

estimated state value instead.

Assumption 1

We assume that the state prediction permits a sufficiently accurate estimate of

the probability of censoring:

E(pk(l, l)) = Φ(Cxk(l)−T (l)
σ(l)

) ≈ Φ(
Cxk|k−1(l)−T (l)

σ(l)
) (3.34)

Assumption 2

In most applications the R matrix is diagonal, meaning the measurement noise

independent amongst measurements. Because of the commonality of R being diagonal
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we will restrict our derivation to this case. Extending the derivation to a model with

off-diagonal R elements is straight forward, but notationally cumbersome.

cov(yk(d), yk(l)) = 0 ∀ d 6= l (3.35)

3.3.4 The Update Stage, continued

The above assumptions allows us to estimate pk at each iteration and obtain

values of Rx̃ỹ and Ree without the knowledge of xk. Where Assumptions 1 and 2 hold,

E(pk) = Diag


Φ(

Cxk|k−1(1)−T (1)

σ(1)
)

Φ(
Cxk|k−1(2)−T (2)

σ(2)
)

...

Φ(
Cxk|k−1(m)−T (m)

σ(m)
)

 . (3.36)

Revisiting Rx̃ỹk
, and using E(xk|k−1vT

k ) = 0n×n since vk is uncorrelated white

Gaussian noise and E(xk|k−1) = xk|k−1, E(xk) = xk|k−1 and

E(xkxT
k ) = E((xk − E(xk|k−1))(xk − E(xk|k−1))T)

+E(xk)E(xk)T

= Ψk|k−1 + xk|k−1xT
k|k−1

(3.37)

The value of Rx̃ỹk
is,

Rx̃ỹk
= (Ψk|k−1 + xk|k−1xT

k|k−1)CTE(pk)

+xk|k−1T T(Im×m − E(pk))− xk|k−1E(yk)T

−xk|k−1xT
k|k−1CTE(pk)

+xk|k−1T T(Im×m − E(pk)) + xk|k−1E(yk)T)

= Ψk|k−1CTE(pk)

(3.38)

Repeat the above steps, using the assumptions along with the definition of E(yk)

to compute Rỹỹ.

Rỹỹk
= E(pk)CΨk|k−1CTE(pk)+E(pkvkvT

k pk) (3.39)
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Where E(pkvkvT
k pk)T is the analytic value calculated in Equation 3.10. If Assumption

2 holds, this is a diagonal matrix written as:

E(pkvkvT
k pk)T = Diag


V ar[yk(1)|xk|k−1(1), σ(1)]

V ar[yk(2)|xk|k−1(2), σ(2)]
...

V ar[yk(m)|xk|k−1(m), σ(m)]

 (3.40)

where V ar[yk(i)|xk|k−1(i), σ(i)] is calculated according to Equation 3.10. Substitut-

ing this optimal Kalman gain Equation 3.31 into Equation 3.27 yields the simplified

covariance update equations:

Ψk|k = (Im×m − E(pk)KkC)Ψk|k−1 (3.41)

The complete Tobit Kalman filter is:

xk|k−1 = Axk−1|k−1

Ψk|k−1 = AΨk−1|k−1AT + Q

xk|k = xk|k−1 + Rx̃ỹk
R−1

ỹỹk
(yk − E(yk))

Ψk|k = (Im×m − E(pk)Rx̃ỹk
R−1

ỹỹk
C)Ψk|k−1

(3.42)

where Rx̃ỹk
is given by Equation 3.38, Rỹỹk

is given by Equation 3.39, elements of

E(yk) where we set xk = xk|k−1 is given by Equation 3.7, and E(pk) is given by

Equation 3.36.

3.3.5 Statistics of Right Censoring

Following from the derivations above, but switching from a low threshold to a

high threshold will result in the following probability distribution of the measurements,

f(yk|xk) =
1

σ
φ(
yk − Cxk

σ
)u(τ − yk) + δ(τ − yk)(1− Φ(

τ − Cxk
σ

)) (3.43)

See Figure 3.1 for the probability distribution function of a right censored mea-

surement.
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Figure 3.1: Probability distribution of a right censored measurement

The expected value of the measurements is;

E(yk|yk < τ, xk, σ) = σ−1

∫ τ

−∞
z
φ( z−Cxk

σ
)

Φ( τ−Cxk
σ

)
dz

= Cxk − σλ((Cxk − τ)/σ)

(3.44)

The expected value,

E[yk|xk|k−1, σ] = P [yk > τ |xk|k−1, σ]E[yk|yk > τ, xk|k−1, σ]

+P [yk = τ |xk|k−1, σ]E[yk|yk = τ, xk|k−1, σ]

= Φ( τ−Cxk
σ

)[Cxk + σλ((Cxk − τ)/σ)] + Φ(Cxk−τ
σ

)τ

(3.45)

And the variance,

V ar[yk|yk > τ, xk, σ] = σ2[1− ð(
Cxk − τ

σ
)] (3.46)
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Using the statistics presented in this section, the Tobit Kalman filter for right

censoring can be implemented.

3.3.6 Statistics of Saturation Censoring

Saturation censoring will be the case when there is left and right censoring

present in the measurement model. To define the left and right censoring problem we

consider the evolution of a scalar output state sequence as,

xk = Axk−1 + wk−1

y∗k = Cxk + vk

yk =


y∗k, τlow < y∗k < τhigh

τlow, y∗k ≤ τlow

τhigh, y∗k ≥ τhigh

(3.47)

It is important to note that the saturation censoring we are presenting in this

dissertation is assuming that the Gaussian noise on the measurements, or the distur-

bance on the system, will never cause the latent variable to jump from the region

y∗k > τhigh to y∗k < τlow without passing through the uncensored region. One major ap-

plication when the occurrence of y∗k > τhigh then y∗k+n < τlow without a measurement in

the uncensored region would occur is in a computer vision tracking application where

a target in an image frame exits the field of view on one side and reenters the field

of view on the other side of the frame. This is another type of censoring that is not

discussed in this paper.

Using Equation 3.47, we define yk as the saturated observation and y∗k as the

latent variable. The probability distribution of a saturated variable with normally

distributed noise is:

f(yk|xk) =
1

σ
φ(
yk − Cxk

σ
)u(yk − τlow)u(τhigh − yk)

+δ(τhigh − yk)Φ(
Cxk − τhigh

σ
) + δ(τlow − yk)Φ(

τlow − Cxk
σ

)

(3.48)

See Figure 3.2 for the probability distribution function of a saturated measure-

ment.
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Figure 3.2: Probability distribution of a saturated measurement

To calculate the expectation of the measurements we first must find the proba-

bility of a measurement being uncensored, puc, the probability of being censored from

above, ph, and the probability of being censored from below, pl.

puc =

∫ τhigh

τlow

φ(
z − Cxk

σ
)dz = Φ(

τhigh − Cxk
σ

)− Φ(
τlow − Cxk

σ
) (3.49)

plow =

∫ τlow

−∞
φ(
z − Cxk

σ
)dz = Φ(

τlow − Cxk
σ

) (3.50)

phigh =

∫ ∞
τhigh

φ(
z − Cxk

σ
)dz = 1− Φ(

τh − Cxk
σ

) (3.51)
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The mean of the measurements when the measurements are not censored is

given by:

E(yk|τhigh > yk > τlow, xk, σ) = (σpuc)
−1

∫ τhigh

τlow

zφ( z−Cxk
σ

)dz

= Cxk − σλ(τhigh, τlow)

(3.52)

puc is a normalization factor in the uncensored region. This expectation differs

from the true value of the latent variable by a bias of σλ(Th, Tl) where,

λ(τhigh, τlow) =
φ(

τhigh−Cxk
σ

)− φ(Tlow−Cxk
σ

)

puc
(3.53)

The expected measured value when censored measurements are included is:,

E[yk|xk|k−1, σ] = P [τhigh > yk > τlow]E[yk|τhigh > yk > τlow]

+P [yk < τlow]E[yk|yk < τlow]

+P [τhigh < yk]E[yk|τhigh < yk]

(3.54)

In the above expectations and probability distribution functions the xk|k−1, σ is

dropped for notational purposes, we write P (α|xk|k−1, σ) as P (α). The remaining two

expectations are E[yk|yk < τlow] = τlow and E[yk|τhigh < yk]] = τhigh

The variance of the expected measured value is derived below:

V ar[yk|τhigh > yk > τlow] =

E[y2
k|τhigh > yk > τlow]− [E[yk|τhigh > yk > τlow]]2

(3.55)

With the first term being,

E[y2
k|τhigh > yk > τlow] = σ−1 1

puc

∫ τhigh

τlow

z2φ( z−Cxk
σ

)dz

= (Cxk)
2 + σ2 − σCxkλ(τhigh, τlow)

+
στlowφ(

τhigh−Cxk
σ

)− τhighφ( τh−Cxk
σ

)

puc

(3.56)

Note that V ar[yk|xk, σ] = V ar[yk|τhigh > yk > τlow] since V ar[yk|yk < τlow, xk, σ] =

V ar[yk|yk > τhigh, xk, σ] = 0.
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3.4 The Tobit Kalman Filter for Saturation

In the previous section we have defined the statistics of a saturated measure-

ment. In this section we derive the optimal Kalman formulation for Tobit censored

measurements using a linear estimator, resulting in a predict and update stage of the

Tobit Kalman filter for saturated data. The derivation of a Tobit Kalman filter for sat-

uration is different than the left or right censoring estimator because the measurements

cannot be modeled with a single Bernoulli random variable.

3.4.1 The Predict Stage

The prior estimate of the state and it’s probability distribution may be written

P(xk|k−1) ∼ N (E(xk|k−1),Var(xk|k−1)) (3.57)

where xk|k−1 ∈ Rn×1 is the state estimate vector of xk given all estimates and mea-

surements up to time k − 1. The predict equation of the state may be written as

E(xk|k−1) = E(Axk−1|k−1 + wk) = Axk−1|k−1 (3.58)

xk−1|k−1is the estimate of xk−1. The state error covariance given measurements

and state information up to time k − 1 may be written as

cov(xk|k−1 − xk) = cov(Axk−1|k−1 + wk −Axk−1)

= Acov(xk−1|k−1 − xk−1)AT + Q

= AΨk−1|k−1AT + Q

(3.59)

where Q is the model covariance matrix and Ψk−1|k−1 is the previous a posteriori

estimate of the state error covariance. Again, the predict stage remains the same as

the standard Kalman filter.

3.4.2 The Update Stage

The optimal Kalman filter must minimize the state error covariance, Ψk|k. The

update step shown below will minimize the state error covariance,

xk|k = xk|k−1 + Rx̃ỹk
R−1

ỹỹk
(yk − E(yk)) (3.60)

43



www.manaraa.com

This is a linear estimator that minimizes the mean squared error, as seen in

Chapter 1. To obtain our estimate of xk|k we must have the values of yk, Rx̃ỹk
and

Rỹỹk
where Rx̃ỹk

is the cross covariance between the Kalman error and the state and

Rỹỹk
is the variance of the Kalman error. Both Rx̃ỹk

and Rỹỹk
will be defined in the

upcoming paragraphs.

Rx̃ỹk
= E((xk − xk|k−1)(yk − E(yk))T) (3.61)

Rỹỹk
= E((yk − E(yk))(yk − E(yk))T) (3.62)

The value of E(yk) was calculated for a scalar case for a censored value in

Equation 3.54; in this notation E(yk) ∈ Rm×1 is a vector, in which each scalar

component can be censored at any given time and may have different threshold lim-

its Thigh = [Thigh(1), Thigh(2), ..., Thigh(m)], Tlow = [Tlow(1), Tlow(2), ..., Tlow(m)] with

Thigh(l), Tlow(l), yk(l) representing the lth component of arrays Thigh, Tlow and yk

respectively.

To find Kk = Rx̃ỹk
R−1

ỹỹk
in Equation 3.60 we minimize the state error covariance,

Ψk|k = cov(xk − xk|k)

= cov(xk − xk|k−1 −Kk(yk − E(yk)))
(3.63)

Three Bernoulli random variables (ζ,ξ, ν) will be introduced to model the oc-

currence of a censored measurements at Thigh, Tlow and a measurement of the latent

variable when it is in the uncensored region respectively. The variable ζk(l) = 1 when

the measurement is censored at Thigh and ζk(l) = 0 when the measurement is not equal

to the threshold value. The measurement model for the Bernoulli variables are,

ζk(l) =

 1, Cxk(l) + vt(l) > Thigh(l)

0, Cxk(l) + vt(l) ≤ Thigh(l)
(3.64)

ξk(l) =

 1, Cxk(l) + vt(l) < Tlow(l)

0, Cxk(l) + vt(l) ≥ Tlow(l)
(3.65)
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νk(l) =

 1, Tlow(l) < Cxk(l) + vt(l) < Thigh(l)

0, otherwise
(3.66)

At any given time step the measurement will represent the state by Cxk(l)+vk(l)

with probability E(νk(l)). In matrix notation the Bernoulli random matrices will be

diagonal ζk ∈ Rm×m, ξk ∈ Rm×m,νk ∈ Rm×mso the measurements will be arriving by

the following equation

yk = νk(Cxk + vk) + ζkThigh + ξkTlow (3.67)

Substituting into Equation 3.63 yields

Ψk|k = cov(xk − xk|k)

= cov(xk − xk|k−1 −Kk(νk(Cxk + vk)

+ζkThigh + +ξkTlow))

(3.68)

To simplify the notation in the derivation we set the Kalman error to

ỹk = νk(Cxk + vk) + ζkThigh + ξkTlow − E(yk) (3.69)

so the covariance of the state estimate becomes

Ψk|k = E((xk − xk|k−1 −Kkỹk)

(xk − xk|k−1 −Kkỹk)T)

= Ψk|k−1 − E((xk − xk|k−1)ỹT
k )KT

k

−KkE(ỹk(xk − xk|k−1)T) + KkE(GkỹT
k )KT

k

(3.70)

with

Ψk|k−1 = E((xk − xk|k−1)(xk − xk|k−1)T) (3.71)

Rx̃ỹk
= E((xk − xk|k−1)ỹT

k ) (3.72)
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Rỹỹk
= E(ỹkỹT

k ) (3.73)

Now we need to find the values for Rx̃ỹ and Rỹỹ. The function for Rx̃ỹ is,

Rx̃ỹk
= E((xk − xk|k−1)(νk(Cxk + vk)

+ζkThigh + ξkTlow − E(yk))T)

= E(xk(Cxk + vk)TνT
k ) + E(xkT T

highζ
T
k )

+E(xkT T
lowξ

T
k )− E(xkE(yk)T)

−E(xk|k−1(Cxk + vk)TνT
k )− E(xk|k−1T T

highζ
T
k )

−E(xk|k−1T T
lowξ

T
k ) + E(xk|k−1E(yk)T)

(3.74)

The probability of the measurement being non censored is a function of the

distance between the latent measured variable and the threshold value. The expected

value of ζk(l, l), ξk(l, l) and νk(l, l) may be written as

E(ζk(l, l)) = Φ(
Cxk(l)− Thigh(l)

σ(l)
) (3.75)

E(ξk(l, l)) = Φ(
Tlow(l)− Cxk(l)

σ(l)
) (3.76)

E(νk(l, l)) = Φ(
Thigh(l)− Cxk(l)

σ(l)
)− Φ(

Tlow(l)− Cxk(l)
σ(l)

) (3.77)

Where Cxk(l) is the lth element of the measurement vector and σ(l) is the

variance of the noise on that element. The above equation require knowledge of the

true state value, the following assumption allows us to relax this dependence and use

the estimated state value instead to obtain values for Rx̃ỹk
and Rỹỹk

.
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Assumption 1

We assume that the state prediction is a sufficiently accurate estimate of the

probability of censoring from above or below:

E(ζk(l, l)) = Φ(
Cxk(l)− Thigh(l)

σ(l)
) ≈ Φ(

Cxk|k−1(l)− Thigh(l)
σ(l)

) (3.78)

E(ξk(l, l)) = Φ(
Tlow(l)− Cxk(l)

σ(l)
) ≈ Φ(

Tlow(l)− Cxk|k−1(l)

σ(l)
) (3.79)

E(νk(l, l)) = Φ(
Thigh(l)−Cxk(l)

σ(l)
)− Φ(Tlow(l)−Cxk(l)

σ(l)
)

≈ Φ(
Thigh(l)−Cxk|k−1(l)

σ(l)
)− Φ(

Tlow(l)−Cxk|k−1(l)

σ(l)
)

(3.80)

Assumption 2

For simplicity we assume no cross-dependence in the measurements. Conse-

quently, R is diagonal and:

cov(yk(d), yk(l)) = 0 ∀ d 6= l (3.81)

3.4.3 The Update Stage, Continued

The above assumptions allows us to estimate ζk, ξk and νk at each iteration

and obtain values of Rx̃ỹ and Rỹỹ without the knowledge of xk. Where Assumptions

1 and 2 hold,

E(ζk) = Diag


Φ(

Cxk|k−1(1)−Thigh(1)

σ(1)
)

Φ(
Cxk|k−1(2)−Thigh(2)

σ(2)
)

...

Φ(
Cxk|k−1(m)−Thigh(m)

σ(m)
)

 . (3.82)
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E(ξk) = Diag


Φ(
Tlow(1)−Cxk|k−1(1)

σ(1)
)

Φ(
Tlow(2)−Cxk|k−1(2)

σ(2)
)

...

Φ(
Tlow(m)−Cxk|k−1(m)

σ(m)
)

 . (3.83)

E(νk) = Diag


Φ(
Thigh(1)−Cxk|k−1(1)

σ(1)
)− Φ(

Tlow(1)−Cxk|k−1(1)

σ(1)
)

Φ(
Thigh(2)−Cxk|k−1(2)

σ(2)
)− Φ(

Tlow(2)−Cxk|k−1(2)

σ(2)
)

...

Φ(
Thigh(m)−Cxk|k−1(m)

σ(m)
)− Φ(

Tlow(m)−Cxk|k−1(m)

σ(m)
)

 . (3.84)

Revisiting Rx̃ỹk
, and using E(xk|k−1) = xk|k−1, E(xk) = xk|k−1 and

E(xkxT
k ) = E((xk − E(xk|k−1))(xk − E(xk|k−1))T)

+E(xk)E(xk)T

= Ψk|k−1 + xk|k−1xT
k|k−1

(3.85)

Rx̃ỹk
= (Ψk|k−1 + xk|k−1xT

k|k−1)CTE(νk)

+xk|k−1T T
highE(ζk) + xk|k−1T T

lowE(ξk)

−xk|k−1xT
k|k−1CTE(νk)T − xk|k−1T T

highE(ζk)T

−xk|k−1T T
lowξ

T
k

= Ψk|k−1CTE(νk)

(3.86)

Repeat the above steps for Rx̃ỹ to compute Rỹỹ

Rỹỹk
= E(νk)CΨk|k−1CTE(νk)+E(νkvkvT

k νk) (3.87)

where E(νkvkvT
k νk)T is related to the scalar Equation 3.55. With assumption 2, the

diagonal matrix is written as:

E(νkvkvT
k νk)T =
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Diag


V ar[yk(1)|Thigh(1) > yk(1) > Tlow(1)]

V ar[yk(2)|Thigh(2) > yk(2) > Tlow(2)]
...

V ar[yk(m)|Thigh(m) > yk(m) > Tlow(m)]

 (3.88)

where V ar[yk(i)|Thigh(i) > yk(i) > Tlow(i)] is calculated according to Equation 3.55.

Substituting this optimal Kalman gain into Equation 3.70 yields the simplified covari-

ance update equations:

Ψk|k = (Im×m −KkE(νk)C)Ψk|k−1 (3.89)

The complete Tobit Kalman filter for saturated data is:

xk|k−1 = Axk−1|k−1

Ψk|k−1 = AΨk−1|k−1AT + Q

xk|k = xk|k−1 + Rx̃ỹk
R−1

ỹỹk
(yk − E(yk))

Ψk|k = (Im×m −Rx̃ỹk
R−1

ỹỹk
E(νk)C)Ψk|k−1

(3.90)

where Rx̃ỹk
is given by Equation 3.86, Rỹỹk

is given by Equation 3.87, E(yk) is given

by Equation 3.54, and E(νk) is given by Equation 3.84.
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Chapter 4

PROPERTIES OF THE TOBIT KALMAN FILTER

In this Chapter we will show some properties of the Tobit Kalman filter. We’ll

show that the Tobit Kalman filter converges to the Kalman filter when the effect of

censoring is negligible. In addition, the small added computational burden is addressed

along with a comparison of the covariance estimates to other methods.

4.1 Equivalence to the Standard Kalman Filter

The Tobit Kalman filter will converge to the standard Kalman filter when the

state value is far away from the censoring region, in the one sided case,

lim
xk|k−1−T

σ
→∞



E(pk) = Im×m

E(yk) = Cxk|k−1

R = σ2

Rx̃ỹ = CΨk|k−1

Rỹỹ = CΨk|k−1CT + R

Ψk|k = (Im×m −KkC)Ψk|k−1

(4.1)

so the Tobit Kalman filter is a generalization of a standard Kalman filter.

4.2 Computation of the Tobit Kalman Filter

There are a few computational advantages to using the Tobit Kalman filter over

existing methods, the first being that there is only a small increase in computations

compared to the standard Kalman filter. The computational difference between the

Kalman filter and the Tobit Kalman filter is the addition of 2×m normal PDFs and

2×m normal CDFs. The extra computations are performed only once per iteration of

the estimator, and are only needed for the update stage.
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4.3 Comparisons of Transformations, Estimating Measurement Uncertainty

In this section we will compare the estimated measurement error covariance

of the UKF and the Tobit Kalman filter. Point clouds with known distribution will

be generated in two dimensions to display the unscented and Tobit transforms to

the measurement domain. To facilitate language used in this section the state error

covariance will be denoted by Ψ and ΨUKF , the measurement error covariance Rỹỹ

for the Tobit Kalman filter and the latent measurement error covariance of the Tobit

Kalman filter, denoted by Σ.

4.3.1 Statistics of Spatial Region Censoring

The distribution of the latent measurements is modeled as a 2D multivariate

Gaussian,

φ(xk, yk) =
1

2πσxσy
e
− 1

2(xk−µxσx
)

2
+
(
yk−µy
σy

)2

(4.2)

The µx and µy are the mean of of the measurements in the horizontal and

vertical directions.

The censored distribution is portrayed in Figure 4.1, mathematically we have,

φc(xk, yk,Σx,Σy) =

 1
2πΣxΣy

e
− 1

2(xk−µxΣx
)

2
+
(
yk−µy

Σy

)2

, xk, yk /∈ O

T, otherwise
(4.3)

Where O represents the occlusion we cannot measure within. The coordinates

of are bounded by O ∈ {Oxmax , Oxmin , Oymax , Oymin}

To perform Tobit Kalman measurement covariance we need Puc for the 2D

model which is,

Puc =
(

1−
∫
xk,yk /∈O

φc(xk, yk,Σx,Σy)dxkdyk

)
I2x2 (4.4)
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Figure 4.1: 2D probability distribution of measurement with single occlusion

Where I2x2 is the identity matrix with size 2x2 and,

∫
xk,yk /∈O

φc(xk, yk,Σx,Σy)dxkdyk = 1−

(Φ(Oxmax , µx,Σx)− Φ(Oxmin , µx,Σx))

(Φ(Oymax , µx,Σy)− Φ(Oymin , µx,Σy))

(4.5)

Where Σx and Σy are the latent measurement uncertainty. To compute the

latent measurement uncertainty, the same method is used that computed the measure-

ment uncertainty. To start, the latent measurement equation for 2D is,

y∗k = Cxk + vk (4.6)

With C = I2x2, xk = [xk yk] with xk, yk representing coordinates in the horizontal and

vertical directions. An vk is additive noise vector with covariance R.

To calculate the uncertainty we will compute the covariance,

E((y∗k − ŷ∗k)(y∗k − ŷ∗k)T)

= E((Cxk + vk −Cx̂k)(Cxk + vk −Cx̂k)T)

= CΨCT + R

(4.7)
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The value for the measurement covariance as calculated by the Tobit Kalman

filter is derived in the Chapter 3. To obtain the covariance in the 2D case we will use

the moment generating function,

Mpq =

∫ ∞
−∞

∫ ∞
−∞

upvqf(u, v)dudv

We will notate all elements of Rk below, where Rk is the dynamic measurement

covariance for the Tobit Kalman filter. Rk has off diagonal elements in a spatial

occlusion model because the censored region in the x direction is dependent on the

censored region in the y direction.

The second moment in the x direction,

M20|UC = M20 −
(

V(x, µ, σ,Oxmax , Oxmin)
(

Φ
(
Oymax−µy

σ

)
− Φ

(
Oymin−µy

σ

)))
(4.8)

Where M20 = R(1, 1) is the measurement variance without the occlusion. The

second moment in the y direction is,

M02|UC = M02 −
(

V(y, µ, σ,Oymax , Oymin

(
Φ
(
Oxmax−µx

σ

)
− Φ

(
Oxmin−µx

σ

)))
(4.9)

The nature of the 2D example is that there is a heavy dependence between the

xk and yk variables, this will be apparent in the cross terms of the measurement noise

matrix Rk. The cross dependence between xk and yk is,

M11|UC = M11 −
(
H(x, µx, σ, Oxmax , Oxmin)H(y, µy, σ, Oymax , Oymin)

)
(4.10)

Where,

V(x, µ, σ, a, b) = 1
σ

∫ a
b
x
′2φ
(
x′−µ
σ

)
dx′

=
((

µ
σ

+ 1
)

Φ
(
a−µ
σ

)
−
(
µ+1
σ

)
φ
(
a−µ
σ

))
−
((

µ
σ

+ 1
)

Φ
(
b−µ
σ

)
−
(
µ+1
σ

)
φ
(
b−µ
σ

)) (4.11)
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H(x, µ, σ, a, b) = 1
σ

∫ a
b
x′φ
(
x′−µ
σ

)
dx′

=
(
µΦ
(
a−µ
σ

)
− σφ

(
a−µ
σ

))
−
(
µΦ
(
b−µ
σ

)
− σφ

(
b−µ
σ

)) (4.12)

The final solution for the Rk is,

Rk =

 M20|UC −M2
10|UC M11|UC −M10|UCM01|UC

M11|UC −M10|UCM01|UC M02|UC −M2
01|UC


Where M10|UC and M10|UC are the expected values of the measurements in the uncen-

sored region, and are given by,

M10|UC = M10 −
(

H(x, µ, σ,On xmax , On xmin

(
Φ
(
On ymax−µky

σ

)
− Φ

(
On ymin−µ

k
y

σ

)))
The first moment in the y direction is,

M01|UC = M10 −
(

H(y, µ, σ,On ymax , On ymin

(
Φ
(
On xmax−µkx

σ

)
− Φ

(
On xmin−µ

k
x

σ

)))
Using the above equations and the Tobit Kalman filter we have a measurement

uncertainty of,

Rỹỹk
= E((yk − ŷk)(yk − ŷk)T )

≈ PucCΨk|k−1CTPuc + +Rk

(4.13)

In Kalman filtering there is the state error covariance, the measurement error

covariance and the cross covariance between the state and the measurement error.

Similar recursive equations have been derived in [53], but with the addition of latent

measurement error covariance, derived in Equation 4.7.

In Figure 4.2 we have a simulation comparing the input xk distribution with

the output distribution yk. The input is centered at (xk, yk) = (0, 0) and has a noise

distribution of N (0, 1) in both directions. The measurements are censored in the right

half plane after a measurement noise is added of N (0, 1) in both directions. As we can
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see in Figure 4.2 the Tobit measurement uncertainty, denoted by the black ellipsoid is

correctly skewed to the right, consistent with the computed measurement skew from

the Monte Carlo trial. By contrast, the UKF incorrectly skews to the left.

Figure 4.2: Simulation of measurement noise distribution as calculated by the Tobit
Kalman update and the UKF in 2D
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Chapter 5

THE 2D TOBIT KALMAN FILTER

As stated in Chapter 1, censored data is prevalent in engineering applications,

one application is in computer vision. Censoring in computer vision occurs when targets

or objects that need to be detected or tracked are partially or fully occluded. Censoring

occurs when tracked targets exit a frame (frame censoring) and if a target enters or

goes behind an occlusion (occlusion censoring). The Kalman filter for target tracking

using computer vision has become possible given the availability of efficient and cheaper

computing platforms with equally improved high quality cameras. The Kalman filter

has been used in feature and target tracking, stereo vision [59] and consequently robot

localization [60].

The applications using tracking with computer vision include tracking targets

with a static background [61] [62], automated surveillance and tracking from aerial im-

agery [63] [64], automated video tagging for high amounts of video data [65], contour

tracking for partially occluded targets [66, 67] human computer interaction through

hand gestures [68], monitoring tasks such as traffic cameras [69], navigation for un-

manned aerial vehicles [64], robotics [70, 71], and road vehicles. The tracking process

in a vision system consists of detection of the object of interest then subsequent tracking

from frame to frame using the assumption that the object will not change appearance

completely in the next frame [59]. Most tracking tasks will impose this constraint on

motion and appearance of the object to make the correspondence problem possible to

solve. The correspondence problem is the ability to detect an object frame to frame.

The algorithm for tracking should still be immune to small deformations, illuminations

changes, noise in image, partial and full occlusion. Some successful work has been

done in tracking that relies on the assumption that the object is deforming slowly with
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respect to the frame rate [61]. The Tobit Kalman for 2D tracking presented in this

chapter will not focus on detection, but on tracking and subsequently imposing con-

straints on the motion by using an appropriate state space model. Tracking with known

motion models often will allow detection algorithms to not be as complex, which is ad-

vantageous when video frames get dropped, there are missed detections or the target

appearance changes [62].

There has been much work done in tracking through occlusion, in this case object

tracking algorithms will first disregard pixels that are occluded [72] to perform the

correspondence. Two other techniques for object tracking through occlusion in video

sequences is presented in [73], where the merge split routine and the straight-through

approach are presented. The correspondence problem, especially after some form of

censoring in computer vision tasks remain to be difficult challenges for a tracking

system.

The advantages to using a Kalman filter for computer vision based object track-

ing is that spurious measurements caused by inaccurate detections are suppressed due

to the use of a dynamic model of the objects motion. As stated in Chapter 1, the

Kalman filter performs a prediction step that provides a priori estimate of the state,

then an update step that provides a posteriori estimate of the state using measurements

on the system. If a measurement is not available, in a computer vision system this hap-

pens when an object of interest is not detected in a frame, then the Kalman filter will

not be able to perform an update stage. Consequently, the predict stage always in-

creases the uncertainty in the state estimate causing the state error covariance to grow

if there continues to be no measurement for many sequential frames. Advantages to

using Kalman filters for tracking include the ability to track and filter out spurious or

noisy measurements but to also track an estimate of the state error covariance. The

state error covariance should intuitively grow the longer an object is not detected in a

tracking system, however; it should not grow unbounded when the measurement has

entered an occlusion with known dimensions. In computer vision tasks, especially in

surveillance when the motion of a target can be identified and modeled appropriately,
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the censored measurements when the target is behind an occlusion can still provide

information to the estimator. If a target has entered a known occlusion, the state error

covariance should not grow unbounded as if the measurements are missing [25,26]. In

the surveillance application, if a target is tracked as it enters a building or tunnel, we

will continue to propagate the model until the target should exit on the other side. If

the target fails to exit the occlusion, then the estimate should converge to the center

of the occlusion.

In this chapter we wish to advance the Kalman filter to work in areas of 1D

and 2D occlusions. Much like in [40], where constraints on a Kalman filter are imple-

mented in the filter to gain performance and in some case preserve optimality. The

derivation for a Tobit Kalman fitler for occlusion censoring starts off with an adapted

state space model, which has piecewise format to show discontinuities of censoring.

Then, a statistical approach is used to find new values for the expected measurement

and variance of measurement noise to perform appropriate measurement updates for

censored data. In effect, we are increasing the system knowledge by giving occlusion

boundaries and standard deviation of measurements to propagate our state estimates

through occlusions.

5.1 Problem Formulation in the 1D Case

In this section we will present the Tobit statistics for 1D occlusions, also referred

to as dead-zones in sensors. First, we solve the problem in the case of one occlusion.

xk = Axk−1 + vk

y∗k = Cxk + wk

yk =

 y∗k, (Tlow > Cxk + wk) ∪ (Cxk + wk > Thigh)
τhigh−τlow

2
, otherwise

Where xk ∈ Rnx1 is the state vector, yk ∈ Rmx1 is the measurement vector,

vk ∈ Rnx1 with covariance matrix Q and wk ∈ Rmx1 with covariance matrix R are

the additive noise in the process and measurements respectively. The bounds for the

occluded region for each measurement is Tlow ∈ Rmx1 and Tlow ∈ Rmx1. If the lth
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measurement censoring bounds are, Tlow(l) = Tlow(l), then the lth measurement does

not contain an occluded region.

If there are N occlusions, then the censored measurement depends on which

object occludes the target. Thus,

xk = Axk−1 + vk

y∗k = Cxk + wk

yk =



y∗k, Cxk + wk > Thigh,1
M(Thigh,1, Tlow,1), Tlow,1 < Cxk + wk < Thigh,1
y∗k, Thigh,2 < Cxk + wk < Tlow,1
M(Thigh,2, Tlow,2), Tlow,2 < Cxk + wk < Thigh,2
...

y∗k, Cxk + wk < Tlow,N

where M(Thigh,η, Tlow,η) is the midpoint between Thigh,η and Tlow,η and Thigh ∈

Rmx1 and Tlow ∈ Rmx1 are vectors of threshold limits for each element in yk.

5.2 Statistics of the Measurement Noise Model

The quantity f(y|R) represents the multivariate normal distribution,

f(yk|R) =
1√

|R|(2π)n
e−

1
2

(yk−µy)R−1(yk−µy)

Where µy is the mean of yk. With no censoring, Tlow =→ −∞ and Thigh →∞,

and the noise wk and vk are zero-mean, normally distributed, the mean values of the

states and measurements models are,

µx,uncensored = E(xk) = E(Axk−1 + vk) = Axk−1

µy,uncensored = E(y∗k) = E(Cxk + wk) = Cxk

(5.1)

When censoring occurs, (Tlow,η 6= Thigh,η) ∪ (|Thigh,η| < ∞) ∪ (|Tlow,η| < ∞),

the mean value for the measurement equation given in Equation 5.1 is biased, but the

expected value can be computed given a priori knowledge of the standard deviation
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of the measurement noise in the uncensored case, and an unbiased estimate of xk.

Similarly, in the censoring case, the covariance of the measurement noise, Rk changes

with respect to the distance the measurements are from the censoring limit. In the

next sections we will refer to R as the covariance matrix in the non censoring case,

and Rk the dynamic covariance matrix in censoring situations.

5.3 The Tobit Kalman Filter

The Tobit Kalman filter will be used to provide unbiased estimate of the states.

The Tobit Kalman filter has many advantages when the measurents are censored or

may become censored, one advantage is that when measurments are censored the error

covariance matrix Ψk|k = E((xk − xk|k)(xk − xk|k)T) does not grow as rapidly as it

does if you treat the censored measurements as missing. Below is the Tobit Kalman

filter,

xk|k−1 = Axk−1|k−1

Ψk|k−1 = AΨk−1|k−1AT + Q

xk|k = xk|k−1 + Rx̃ỹk
R−1

ỹỹk
(yk − E(yk))

Ψk|k = (Im×m −Rx̃ỹk
R−1

ỹỹk
pucC)Ψk|k−1

(5.2)

Rx̃ỹk
= Ψk|k−1CTpuc (5.3)

Rỹỹk
= pucCΨk|k−1CTpuc + Rk (5.4)

Where xk|k−1 and Ψk|k−1 are the a priori estimate of the state and state

error covariance matrix, and xk|k , Ψk|k are the a posteriori estimate of the state

and covariance matrix at time k. The equations Rx̃ỹk
and Rỹỹk

are derived in [53]

and Chapter 3 and represent the covariance between the Kalman error and the state

error E((xk − xk|k−1)(yk − E(yk|xk|k−1))T), and the variance of the Kalman error,

E((yk − E(yk))(yk − E(yk))T). In this formulation, the Tobit Kalman filter gain is
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Kk = Rx̃ỹk
R−1

ỹỹk
and the Tobit innovation is yk − E(yk|xk|k−1). E(y|xk|k−1) is differ-

ent for different censoring conditions, in the subsequent sections we will derive this

term for our occlusion model. In Section 5.4 we derive E(y|xk|k−1) and Rk for one

dimensional occlusions then extend the model to 2D in Section 5.7.

5.4 Statistics of the 1D Occlusion Model, Continued

Using the Tobit Kalman filter we have an estimate for yk, which we will denote

as E(yk|R,xk|k−1) which is unbiased mean of the measurements.

In the censored case with N occlusions the probability distribution of the mea-

surement noise is,

fc(yk|R,xk|k−1) =

f(yk|R,xk|k−1), y∗k > Thigh,1
∆k,1

∫ Thigh,1
Tlow,1

f(yk|R,xk|k−1)dyk Tlow,1 < y∗k < Thigh,1
f(yk|R,xk|k−1), Thigh,2 < y∗k < Tlow,1
∆k,2

∫ Thigh,2
Tlow,2

f(yk|R,xk|k−1)dyk Tlow,2 < y∗k < Thigh,2
...

f(yk|R,xk|k−1) y∗k < Tlow,N

(5.5)

With ∆k,1 = δ(yk −M(Thigh,1, Tlow,1)), the Kronecker delta function and Thigh,η
and Tlow,η represent vector of bounds of the ηth occlusion. See Figure 5.1 for a repre-

sentation of this distribution with N = 3.

Using the distribution in Equation 5.5, we can calculate the expected value

of the measurements and Rk given the a priori state estimate and the uncensored

measurement noise, R.

The distribution in Equation 5.5 is valid in the general case, when there is no

uncertainty in that state estimate. However, in adaptive filtering and estimation there

is always some level of uncertainty. Fortunately, the Kalman filter and Tobit Kalman

filter provide an estimate of the state, xk|k and an estimate of the state error covariance

matrix, Ψk|k.
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Using Ψk|k−1 and R, we can adjust the probability distribution to give more

accurate descriptions of the probability of being censored in certain regions. The new

covariance matrix that will represent the total uncertainty is Πk.

Πk = E((Cxk + wk −Cxk|k−1)(Cxk + wk −Cxk|k−1)T)

= CΨk|k−1CT + R

So the new distribution with N occlusions will be,

fc(yk|Πk,xk|k−1) =

f(yk|Πk,xk|k−1), y∗k > Thigh,1
∆k,1

∫ Thigh,1
Tlow,1

f(yk|Πk,xk|k−1)dyk Tlow,1 < y∗k < Thigh,1
f(yk|Πk,xk|k−1), Thigh,2 < y∗k < Tlow,1
∆k,2

∫ Thigh,2
Tlow,2

f(yk|Πk,xk|k−1)dyk Tlow,2 < y∗k < Thigh,2
...

f(yk|Πk,xk|k−1) y∗k < Tlow,N

Figure 5.1: 1D distribution represented in blue with N=3 occlusions
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The expected value of the measurements in all regions is,

E(yk|y∗k > Thigh,1) =
∫∞
Thigh,1

ykfc(yk|Πk,xk|k−1)dyk

E(yk|Tlow,1 < y∗k < Thigh,1) = M(Tlow,1, Thigh,1)

E(yk|Thigh,2 < y∗k < Tlow,1) =
∫ Tlow,1
Thigh,2

ykfc(yk|Πk,xk|k−1)dyk

E(yk|Tlow,2 < y∗k < Thigh,2) = M(Tlow,2, Thigh,2)
...

E(yk|y∗k < Tlow,N) =
∫ Tlow,N
−∞ ykfc(yk|Πk,xk|k−1)dyk

Using the above results, we can get the E(yk|xk|k−1)

E(yk|xk|k−1) = F (yk > Thigh,1)E(yk|yk > Thigh,1)

+
(
F (Tlow,1 < yk < Thigh,1)

E(yk|Tlow,1 < yk < Thigh,1)
)

+
(
F (Thigh,2 < yk < Tlow,1)

E(yk|Thigh,2 < yk < Tlow,1)
)

+
(
F (Tlow,2 < yk < Thigh,2)

E(yk|Tlow,2 < yk < Thigh,2)
)

+ . . .+
(
F (yk < Tlow,N)

E(yk|yk < Tlow,N)
)

where,

F (α < yk < β) =

∫ β

α

f(yk|Πk,xk|k−1)dyk

is the probability that yk is between α and β. In simpler notation the E(yk|xk|k−1)

can be written as,

E(yk) = E(y∗k)−∑N
η=0 F (Tlow,η < yk < Thigh,η)E(yk|Tlow,η < yk < Thigh,η)
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Where E(y∗k) is the expected value of yk when there are no occlusions and

E(y∗k) = Cxk|k−1 is the expected measurement for the standard Kalman filter innova-

tion. In the case of Gaussian noise distribution the total probability that y∗k is in a

certain region is,

F (A < y∗k < B) =∫ B
A

1√
|Πk|(2π)n

e−
1
2

(y∗k−E(y∗k)Π−1
k (y∗k−E(y∗k)dy∗k

Using the property that F (A < y∗k < B) = F (y∗k < B)− F (y∗k < A). We will be able

to use this property along with Bayes formula to compute E(yk) and Rk

The computation for the covariance Rk is derived in a similar fashion as E(yk|xk|k−1).

We will assume that there is no cross correlation amongst measurements, meaning Rk is

diagonal. Equation 5.6 is the equation for Rk, where conditions on xk|k−1 are assumed

as in, E(yk) = E(yk|xk|k−1) to simplify the notation in the next sections.

Rk = E((yk − E(yk))(yk − E(yk))T ))

= E(ykyT
k )− E(yk)E(yk)T

(5.6)
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We will solve for Rk in general,

E(ykyk
T ) =

∫∞
−∞ ykyT

k f(yk|Πk,xk|k−1)dyk

= F (y∗k > Thigh,1)E(ykyk
T |y∗k > Thigh,1)

+
(
F (Tlow,1 < y∗k < Thigh,1)

E(ykyk
T |Tlow,1 < y∗k < Thigh,1)

)
+
(
F (Thigh,2 < y∗k < Tlow,1)

E(ykyk
T |Thigh,2 < y∗k < Tlow,1)

)
+
(
F (Tlow,2 < y∗k < Thigh,2)

E(ykyk
T |Tlow,2 < y∗k < Thigh,2)

)
+ . . .+

(
F (y∗k < Tlow,N)

E(ykyk
T |y∗k < Tlow,N)

)
= E(y∗ky∗k

T )−∑N
η=0

(
F (Tlow,η < yk < Thigh,η)

E(ykyk
T |Tlow,η < yk < Thigh,η)

)

(5.7)

With E(ykyk
T |Tlow,1 < y∗k < Thigh,1) = M(Tlow,1, Thigh,1)2 and E(y∗ky∗k

T ) = R,

the variance without occlusion censoring. To complete Rk, E(yk)E(yk)T should be

subtracted from Equation 5.7.

The above values for E(yk) and E(ykyk
T ) can be calculated using the below

equations for Gaussian integrals, for each element of array E(yk), and the diagonal

elements of E(ykyk
T ). The cumulative density function and the probability density

function for a normal distribution is with zero mean and unity variance,

Φ(α) =

∫ α

−∞
φ(α′)dα′

φ(α) =
1√
2π
e−

α2

2
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where α is a scalar. For the mean, where yk(l), Tlow,η(l), Thigh,η(l) represent

the measurements, and the lower and higher threshold limits respectively for the lth

measurement.

So,

E(yk) = Cxk|k−1

−
∑N

η=1 H(x,Cxk|k−1,Diag(R),Tlow,η, Thigh,η)

So for Rk,

E(ykyT
k ) = V(x,Cxk|k−1,Diag(R),−∞,∞)

−
∑N

η=1 V(x,Cxk|k−1,Diag(R),Tlow,η, Thigh,η)

Where H(x, µ, σ, a, b) and V(x, µ, σ, a,b) are defined in 4.12 and 4.11.

5.5 Problem Formulation for 2D

Using the same approach above we will derive the Tobit Kalman fitler for 2D

spatial tracking applications. The difference between spatial tracking with 2D occlusion

and 1D occlusions censoring is that there is a correlation between the horizontal and

vertical directions uncertainty, meaning Rk is no longer diagonal, and assumption 1

from [53] is invalid. For the formulation of the 2D tracker in an occluded environment

we will again find the censored probability distribution of the measurements, then

the expected values of the measurents and the dynamic measurment noise covariance

matrix. The standard state space model will be used,

xk = Axk−1 + Buk−1 + vk

y∗k = Cxk + wk

yk =

 y∗k, Cxk + wk ∈ S

T, otherwise

(5.8)

where S is the uncensored region. For this paper we restrict ourselves to a

constant velocity model for the targets which has been used previously for tracking

applications [74]. The states are, xk = [xpos xpos,vel ypos yposvel] where xpos is the
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location of the target in the horizontal axis while xpos,vel is the horizontal velocity,

xpos, xpos,vel ∈ Rx, where Rx is the set of real numbers on the horizontal axis. The

states ypos is the location of the target in the vertical axis while ypos,vel is the vertical

velocity ypos, ypos,vel ∈ Ry, where Ry is the set of real numbers on the vertical axis .

The T is the thresholded value, (the measurement) when the target is in an occluded

region. The state space matrix’s with ∆t = 1,

A = α


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1



B =


0 0

1 0

0 0

0 1


C =

1 0 0 0

0 1 0 0


The vk and wk in Equation 5.8 are white gaussian noise with covariance Q and

R respectively.

The measurements of Cxk + wk only occur when Cxk + wk ∈ S, see Figure

5.3. The occluded regions will be represented by On and the region ouside the frame

will be represented by F. In this paper we will restrict our censoring to just occlusion

censoring, that is, F = S.

5.6 Introduction to the 2D Gaussian Probability Density Function

Because the measurements are not deterministic we will present the statistical

framework for a 2D sensor system. The second order Gaussian probability distribution

will be used to describe the noise in the measurements of the 2D tracking system. For

a second order measurement model we have,
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Figure 5.2: Spatial tracking space, Cx0 is the initial measurement location

f(xk, yk) = 1

2π
√
det(Σ)

e−
1
2

[xk−µx y−µy ]Σ−1[xk−µx y−µy ]

Where xk and yk and locations in the horizontal and vertical directions Expanded,

f(xk, yk) =

1

2πσxσy
√

1−ρ2
e
− 1

2(1−ρ)

(
(xk−µx)2

σ2
x

− 2ρ(x−µx)(y−µy)

σxσy
+

(yk−µy)2

σ2
y

)
Where,
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Σ =

 σ2
x ρσxσy

ρσxσy σ2
y


E(xk) = µx

E(yk) = µy

And ρ is the correlation coefficient,

ρ =
σxy
σxσy

For our purposes we set the correlation coefficient to ρ = 0 which results in indepen-

dence of the x and y variables, leaving us with the following property.

f(xk, yk) = f(xk)f(yk)

The position measurements are also orthogonal since,

E(xk, yk) = E(xk)E(yk)

These results are used mostly in spatial tracking applications, however, when occlusion

censoring occurs there is a cross correlation term so the results above will not fully

represent the censored measurement.

5.7 Statistics for the 2D Tobit Kalman filter

First, we will define the measurement space, the occluded space and the unoc-

cluded space. The occluded space Oη is defined as,

Oη = {(xk, yk) ∈ R2 : (Oη xmin < xk < Oη xmax) ∩ (Oη ymin < yk < Oη ymax)}

And the measurement space,

M = {(xk, yk) ∈ R2}

69



www.manaraa.com

The space, S, is the unoccluded region where measurements are not censored,

S = M−
∑N

η=1 Oη

To model the noise on the measurements of a non censored system, when S covers the

entire space, we will use the 2D multivariate Gaussian. R, is diagonal and represents

the measurement error covariance matrix when there are no occlusions.

yk ∼ N (µ,R)

R = diag(σx, σy)

with,

f(xk, yk) =
1

2πσxσy
e
− 1

2(xk−µxσx
)

2
+
(
yk−µy
σy

)2

(5.9)

The µx and µy are the mean of the measurements in the horizontal and vertical

directions, for the model in Equation 5.8 the mean measurements are,

µxk = E(Cxk|k−1(1))

µyk = E(Cxk|k−1(3))

Where Cxk|k−1(1) and Cxk|k−1(3) denotes the first and third element of the

array.

As in the previous example, we will use the value of the total uncertainty using

the Tobit Kalman estimate of the error covariance. To aid in calculating the probability

we can use the state estimate covariance to improve the estimate of the probability

that the state is uncensored.

So the uncensored measurement variance, σx and σy, will be added to the state

error covariance matrix in the x and y directions. We will denote the final measurement

variances for the x and y direction as Σx and Σy,
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Σx =
√
σ2
x + uTCΨk|k−1CTu

Σy =
√
σ2
y + qTCΨk|k−1CT q

Where u = [1 0]T and q = [0 1]T are the unit directional vectors, and uTCΨk|k−1C
Tu

and qTCΨk|k−1C
T q are the respective a priori measurement error covariances in those

directions. The covariance from the a priori state error covariance Σx and Σy should

be replaced in the Equation 5.9, the new probability distribution is,

y ∼ N (µ,Πk)

Πk = diag(Σx,Σy)

f(xk, yk) =
1

2πΣxΣy

e
− 1

2

(
xk−µ

x
k

Σx

)2

+

(
yk−µ

y
k

Σy

)2

Where Πk is measurement uncertainty.

This formulation is beneficial in cases where a target is missing for may sub-

sequent measurements, the state estimate covariance grows when measurements are

censored, so this value should be included, along with the measurement noise, when

calculating the probability of censoring.

Where N occlusions are represented by On, the probability distribution of the

measurement noise is,

fc(xk, yk) =

f(xk, yk), y∗k ∈ S

∆k

∫
(xk,yk)∈O1

f(xk, yk)dxkdyk y∗k ∈ O1

...

∆k

∫
(xk,yk)∈ON

f(xk, yk)dxkdyk, y∗k ∈ ON

with ∆k = δ(xk − τx, yk − τy), the Kronecker delta function in two dimensions.

See Figure 5.3 for a sample distribution of measurement uncertainty with one occlusion.

The expected value of the measurements is given,
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E(yk|y∗k ∈ S) =
∫

(xk,yk)∈S
ykf(xk, yk)dxkdyk

E(yk|y∗k ∈ O1) = [Tx Ty]TO1

E(yk|y∗k ∈ O2) = [Tx Ty]TO2

...

E(yk|y∗k ∈ ON) = [Tx Ty]TON

In occluded regions [Tx Ty]TO1
= COM(O1), and COM(O1) ∈ R2×1 is the center

of mass of O1 assuming uniform “density.”

COM(O1) =

 1
O1 xmax−O1 xmin

∫ O1 xmax

O1 xmin
ξdξ

1
O1 ymax−O1 ymin

∫ O1 ymax

O1 ymin
νdν


Where O1 xmin

,O1 xmax and O1 ymin
,O1 ymax are the maximum and minimum

values in the horizontal and vertical axis of O1.

5.7.1 The Statistics for a 2D Tobit Kalman Filter

In this section E(yk) and Rk with N occlusions is calculated. To compute the

statistics for the 2D Tobit Kalman Filter we assume that the occlusions are rectangular

to allow numerical solutions for the mean and variance equations. The distribution will

be centered at the model mean, which is Cxk|k−1 and measurement covariance given

by the variance of the measurement noise. The probability of the measurement being

in the nth occlusion is,

F (xk, yk|xk, yk ∈ On) =

∫ O1 xmax

O1 xmin

∫ O1 ymax

O1 ymin

f(xk, yk)dxkdyk

The probability of being uncensored is,

F (xk, yk|xk, yk ∈ S) = 1−
∑N

n=1 F (xk, yk|xk, yk ∈ On)

72



www.manaraa.com

To continue with the statistics in the 2D space, we will introduce the notation

for image moments. The moment function is denoted by,

Mpq =

∫ ∞
−∞

∫ ∞
−∞

upvqf(u, v)dudv

the general form for a central moment is,

µpq =

∫ ∞
−∞

∫ ∞
−∞

(u− ū)p(v − v̄)qf(u, v)dudv

Where ū = M10 and v̄ = M01.

To calculate the expected value of the measurements using the model in Equa-

tion 5.8, we will use the notation for image moments. The mean in the x direction and

the mean in y direction will be represented as [M10 M01]T when there is no censoring.

We use the notation, M10|S to represent the first moment in the x direction, in the

space S and M10|Oη to represent the first moment in the x direction, in the occlusion

Oη. To calculate the mean for the Tobit Kalman filter we continue with Equation 5.7,

and calculate yk ∈ S,

M10|S =
∫∞
−∞

∫∞
−∞ xkf(xk, yk)dxkdyk

−
∑N

η=1

∫ Oη xmax
Oη xmin

∫ Oη ymax
Oη ymin

xkf(xk, yk)dxkdyk

where the image moment in occlusionη is,

M10|Oη =
∫ Oη xmax
Oη xmin

∫ Oη ymax
Oη ymin

xkf(xk, yk)dxkdyk

M10|S, M10|Oη represents the first moment in the horizontal direction in the

space S, and behind an occlusion, η. The moment in the vertical direction is,

M01|S =
∫∞
−∞

∫∞
−∞ ykf(xk, yk)dxkdyk

−
∑N

η=1

∫ Oη xmax
Oη xmin

∫ Oη ymax
Oη ymin

ykf(xk, yk)dxkdyk

where,

M01|On =
∫ On xmax
On xmin

∫ On ymax
On ymin

ykf(xk, yk)dxkdyk (5.10)
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The total model mean for the entire space is equal to,

M01|S = M01

−
∑N

n=1 F (xk, yk|xk, yk ∈ On)M01|On

(5.11)

For the xk direction,

M10|S = M10

−
∑N

n=1 F (xk, yk|xk, yk ∈ On)M10|On

(5.12)

Where M01 and M01 represent moments in an uncensored situation, µxk and µyk

respectively. Because we are assuming that the occlusions are rectangular we can solve

for the elements in On.

F (xk, yk|xk, yk ∈ On) = (Φ(
On xmax−µxk

σ
)− Φ(

On xmin−µ
x
k

σ
))

(Φ(
On ymax−µ

y
k

σ
)− Φ(

On ymin−µ
y
k

σ
))

So the moments for Equations 5.11 and 5.12 starting with Equation 5.10 is,

M10|On = COM(On)(1)

and in the y direction,

M01|On = COM(On)(2)

where COM(On)(1) is the first element in COM(On). The above moment is

the expected value of censored data which is a constant, so they are simple to compute.

In censored conditions, where a measurement lies behind an occlusion, the expected

measurement is an arbitrary value we choose to be the center of mass of an occlusion.

Using H in Equation 4.12 from the single dimension case, the first moment in

the x direction is,
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M10|S = M10

−
∑N

n=1

(
H(x, µ, σ,On xmax ,On xmin(

Φ
(
On ymax−µky

σ

)
− Φ

(
On ymin−µ

k
y

σ

)))
The first moment in the y direction is,

M01|S = M10

−
∑N

n=1

(
H(y, µ, σ,On ymax ,On ymin(

Φ
(
On xmax−µkx

σ

)
− Φ

(
On xmin−µ

k
x

σ

)))
The above equations are computing the moments by finding the total expecta-

tion in the space then subtracting segments contained in occluded areas. To continue

as in Section 5.4 for the 1D case, the next step for the Tobit Kalman filter is to find

the values of the dynamic measurement covariance matrix, Rk. We will continue to

use the image moment notation, so finding the second moments in S in the x direction

is,

M20|S = M20

−
∑N

n=1

(
V(x, µ, σ,On xmax ,On xmin(

Φ
(
On ymax−µky

σ

)
− Φ

(
On ymin−µ

k
y

σ

))) (5.13)

The second moment in the y direction is,

M02|S = M02

−
∑N

n=1

(
V(y, µ, σ,On ymax ,On ymin(

Φ
(
On xmax−µkx

σ

)
− Φ

(
On xmin−µ

k
x

σ

))) (5.14)

The nature of the example in this paper is that there is a heavy dependence

between the x and y states. This is apparent in the cross terms of the measurement
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noise matrix Rk. The cross dependence between x and y is apparent in the second

moment M11|S when there are censored measurements.

M11|S = M11

−
∑N

n=1

(
H(x, µx, σ,On xmax ,On xmin

)

H(y, µy, σ,On ymax ,On ymin
)
) (5.15)

The above Equations 5.13-5.15 are only applicable when there is no cross de-

pendence in the horizontal and vertical directions of the latent measurement noise, R

is diagonal. The complete calculation for the moments M10|M, M01|M,M20|M, M02|M,

and M11|M of the entire censored measurement space M is,

M10|M = F (xk, yk|xk, yk ∈ S)M10|S+∑N
n=1 F (xk, yk|xk, yk ∈ On)M10|On

M01|M = F (xk, yk|xk, yk ∈ S)M01|S+∑N
n=1 F (xk, yk|xk, yk ∈ On)M01|On

M20|M = F (xk, yk|xk, yk ∈ S)M20|S+∑N
n=1 F (xk, yk|xk, yk ∈ On)M20|On

M02|M = F (xk, yk|xk, yk ∈ S)M02|S+∑N
n=1 F (xk, yk|xk, yk ∈ On)M02|On

M11|M = F (xk, yk|xk, yk ∈ S)M11|S+∑N
n=1 F (xk, yk|xk, yk ∈ On)M11|On

In an occlusion, the measurements have no variance because they are a constant

values known a priori, so,

M20|On = COM(On)(1)2

M02|On = COM(On)(2)2

M11|On = COM(On)(1)COM(On)(2)

Where 02x2 is a zero matrix.
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5.8 The 2D Tobit Kalman filter with Occluded Region Censoring

Using equations in Section 5.7.1 we can present the 2D Tobit Kalman filter with

occlusion region censoring. Extending from Equations 5.2 the value of E(yk) and Rk

are,

E(yk) =

 M10

M01


Rk =

 M20|S −M2
10|S M11|S −M10|SM01|S

M11|S −M10|SM01|S M02|S −M2
01|S


Where M20|S −M2

10|S, M11|S −M10|SM01|S, M02|S −M2
01|S are derived in the

previous section.

5.9 Comparison to the Standard Kalman Filter

The Kalman filter is optimal in the linear case, hence, it is important that the

Tobit Kalman filter will converge to the standard Kalman filter when there are no

censored regions.

5.9.1 Convergence to the Standard Kalman Filter

In the case where we have zero occlusions (N=0) then the Tobit Kalman Filter

will converge to a standard Kalman filter. In [53] the Tobit Kalman filter is shown to

converge to the standard Kalman filter when the probability of being uncensored goes

to one, which happens in the case of zero occlusions and infinity large frame.

F (xk, yk|xk, yk ∈ S)

= 1−
∑N

n=1 F (xk, yk|xk, yk ∈ On) = 1

And the innovation process will converge to the Kalman error,

lim(xk,yk)∈W yk − E(yk) = yk −

 M10|M

M01|M


= yk − Cxk|k−1
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When the measurement space, M = S, the measurement covariance matrix, Rk

will converge to,

lim(xk,yk)∈S Rk =

σ2
x 0

0 σ2
y


The above derivation of convergence to the standard Kalman filter can also be

done by stating that the expected measurement is far away from any occlusion. The

definition of ‘far away’ is dependent on R. If min(E(yk)−Oη) >> δ[R(1, 1) R(2, 2)]T

where δ is an scalar integer.
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Figure 5.3: Probability distribution of 2D Gaussian with one occlusion
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Chapter 6

SIMULATIONS

In this chapter, we present simulations of the Tobit Kalman filter to show use-

fulness in applications where censored data is unavoidable. The Tobit Kalman filter is

compared to the Kalman filter for intermittent measurements (KFIM) which is outlined

in [26] . This filter operates as a Kalman filter until a missing measurement occurs,

then it will only predict the current state and covariance matrix and not update the fil-

ter; so xk|k = xk|k−1 and Ψk|k = Ψk|k−1. The KFIM treats censored measurements as

missing, instead of censored. In addition to the KFIM, we compare the Tobit Kalman

filter to the results of the standard Kalman filter (SKF), which treats censored values

as regular measurements, and the particle filter, which is a nonlinear approach that

makes no assumptions on the model or noise distributions. Many types of particle

filtering are available to use [75], in this comparison we will use the sequential impor-

tance resampling (SIR), with re sampling if the effective number of particles is less

than 50% of the particles used. We will use a simple re sampling strategy, the system-

atic re sampling approach [55]. The probability of measurements used for the particle

filter weighting function, P (yk|xk) when censoring occurs is given in Chapter 3 for 1D

censoring, and Chapter 5 for 2D censoring.

6.1 One Sided Censoring

The results from three experiments demonstrate the improvement possible with

the Tobit Kalman filter in comparison to the SKF, the KFIM and the particle filter.

The first simulations estimate a constant value near a censoring limit and show that

the Tobit Kalman Filter is unbiased. The next two simulations are a Brownian motion

model and a sinusoidal motion model which have disturbances as well as additive noise.
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6.1.1 Estimate a Constant Value

In this example we will estimate a constant value near a censoring region. In

Figure 6.1 we have a constant value at .2 with measurement noise σ = 1 and censoring

limit τ = 0. The initial conditions are x0 = 2 and Ψ0 = 1, with Q = 10−11. The

particle filter is represented with 100 particles in this example.

Figure 6.1: Comparison of particle filter, Tobit Kalman filter, SKF and KFIM in
estimating a constant signal above the censoring limit

As shown in Figure 6.1, the Tobit Kalman filter and particle filter converge to

the true value. The other methods are biased with estimates produced by the SKF and

KFIM falsely converging to values in the uncensored region. In this example, the SKF

81



www.manaraa.com

converges to the average value of measurements including the censored values while the

KFIM converges to the average of measurements not including the censored values.

In Figure 6.2 the particle filter and the Tobit Kalman filter are able to estimate

a constant value below the censoring limit.

Figure 6.2: Comparison of particle filter, Tobit Kalman filter, SKF and KFIM in
estimating a constant signal below the censoring limit

The previous simulations show the performance when a large number of particles

is used, in Figure 6.3 the same simulation is run as in Figure 6.2, however; only 10

particles are used. In 6.3 the Tobit Kalman filter is able to outperform the particle

filter, with the same conditions Figure 6.4 shows that the particle filter outperforms
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the Tobit Kalman filter in convergence speed but has a smaller steady state error. The

variance in the steady state estimate of the Tobit Kalman filter is due to the Q not

being zero.

Figure 6.3: Experiment 1 with too few particles: Constant value below the censoring
limit, the particle filter is run with 10 particles.

The simulations in Figure 6.3 and 6.4 show the practical effect of using a sta-

tistical approach such as a particle filter, verses a deterministic approach such as the

Tobit Kalman filter. Using statistical filters can often produce undesirable results.
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6.1.1.1 Random Walk Simulation

In this section, we track a damped random walk signal with normal process noise.

Random walk often leads to saturation issues in both MEMS sensors and tracking

occlusions with visual targets. The model is simple yet shows the tracking performance

of our method in a disturbance-driven model. The data is generated from,

y∗k = αy∗k−1 + ηk (6.1)

We choose α = .99 to dampen the natural divergence of the model, keeping it

close to the censoring limit. η is a normally distributed random variable with standard

deviation 0.3, and the measurements have noise with σ = 1 and are left-censored at

T = 0. The initial conditions are x0 = 5 and Ψ0 = 1.

As shown in Figure 6.5, the SKF’s estimates converge to the censoring limit

when the measurements are censored for a sufficient period. The KFIM only updates

when measurements are not censored, resulting in a increased uncertainty in the state

estimate as described in [26], this leads to an increased reliance on non-censored mea-

surements. The particle filter is run with 100 particles for this example.

In this example the particle filter outperforms the Tobit Kalman filter for the

censored data case, the RMS error of the particle filter is 0.6124 and for the Tobit

Kalman filter, 0.6561; however, the particle filter requires a much higher computational

cost.

6.1.1.2 Oscillator Simulation

The following example has state-space dynamics with the state transition and

measurement transfer matrices,

A = α

cos(ω) − sin(ω)

sin(ω) cos(ω)

 (6.2)

C =
[
1 0

]
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The purpose of this simulation is to show a robust tracking ability with a known

model and unknown disturbance that enters the system through wk. In this example,

α = 1, the disturbance is normally distributed with standard deviation of .1 and is

uncorrelated to the measurement noise which is normally distributed with standard

deviation of σ = 1. The initial conditions are x0 = [5 0]T and Ψ0 = I2x2 and the

frequency is ω = .007x2π with sampling period T = 1. This model has a relatively

small process noise, so the particle filter with 100 particles has a long convergence time.

Figure 6.6 shows that even when the measurements are censored, the output

of the Tobit Kalman filter closely tracks the actual state while the KFIM method

and SKF are unable to track through censoring. This is because the KFIM will trust

stray, non-censored data after several censored measurements; due to the large state

error covariance not performing a measurement update. The SKF will converge to

censored data while the state error covariance continuously decreases, even when the

measurements are censored.

The particle filter comes the closest to performing as well as the Tobit Kalman

filter, however, the Tobit Kalman filter far outperforms the particle filter in its con-

vergence speed. If the process noise of the measurements increases, the particle filter

converges faster, see Figure 6.7 for the same simulation but with the process noise

increased to a standard deviation of .5. The particle filter is also quick to converge to

measurements when the sinusoidal data re enters the uncensored region, this is direct

consequence of assumption 1 of the Tobit Kalman filter which states that the proba-

bility of the measurement begin censored can be predicted by the system model. It

should be noted that artificially increasing the process noise to improve convergence

time will cause unnecessary large variance in the particle filter estimate, trading quicker

convergence for large steady state error.

In Figure 6.8, the average RMS error for the same sinusoidal example is shown

for the particle filter with 10-560 particles at 50 particle increments, where each simu-

lation is run with 50 sets of simulated data. The process noise has standard deviation

.1 and the measurement noise is σ = 1, the initial condition for the simulated data and
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the estimator is x = [5 0]T . The Tobit Kalman filter outperforms the particle filter

in RMS error for most cases, and has smaller variance in the performance amongst

different data sets. Again, this results from the Tobit Kalman filter being determin-

istic while the particle filter is stochastic. This simulation shows that the stochastic

approach has a significant probability of being worse than the Tobit Kalman filter even

when 500 particles are used.

There are certain values for process noise where the particle filter outperforms

the Tobit Kalman filter, but always at the expense of longer computation time. In

Figure 6.8 the RMS error is plotted, along with time; showing that the particle filter

is several times more computationally expensive than the Tobit Kalman fitler. The

simulation is run with 1000 time steps and the Tobit Kalman filter will run in .3

seconds, where the particle filter will run in 2.17 seconds for 10 particles and 110.4

seconds with 560 particles.

6.2 UKF and EKF Performance

In this section we present a simulation using a sinusoidal model to compare the

Tobit Kalman filter with the EKF and UKF formulation. Using the statistics described

in [22] [76], the state space model we will be using is,

xk = Axk−1 + Buk

y∗k = Cxk

yk =

 y∗k, y∗k < T

T, otherwise

(6.3)

A = α

cos(ω) −sin(ω)

sin(ω) cos(ω)

 (6.4)

B =

1 0

0 1

 (6.5)

C =
[
1 0

]
(6.6)
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With α < 1

In Figure 6.9 we have a latent measurement noise of vk ∼ N (0, 2) and a dis-

turbance noise of wk ∼ N (0, .1). The RMS error in the state estimate for the Tobit

Kalman filter is less than the UKF and EKF error. The state error covariance for the

UKF and EKF has a sharp discontinuity when leaving a censored region, while the

Tobit Kalman filter state error covariance has a smoother transitions. This transition

would be sharper in the Tobit Kalman filter if the measurement noise was smaller.

In the next example we use a less informative model, the state space changes

to A = .999, B = 1 and C = 1, and latent measurement noise of vk ∼ N (0, 1) and a

disturbance noise of wk ∼ N (0, .1).

In Figure 6.10 the Tobit Kalman filter is able to smoothly transition from cen-

sored to non-censored regions. See the top graph of Figure 6.10 at sample 2000-2500,

the Tobit Kalman filter is able to converge to the true estimate when seeing only the

noise on the measurements. The EKF and UKF are not able to estimate the state un-

less it has exited the censored region. Applications for this type of performance in an

estimator are [77], which provides an example of a stable controller when measurements

are censored.

6.3 Occlusion Results

In this section we present simulations from the algorithm developed in Chapter

5. The simulation for the 1D occlusions will have the same dynamic model as in the

previous section.

6.3.1 1D Occlusion Results

In the simulation depicted in Figure 6.11 there are two occluded regions with a

random walk dynamical model. The process noise standard deviation for this example

is 0.1 and the measurement noise is 1. The α = .999 and the initial conditions for the

state is x0 = 8 and the state error covariance is P0 = 1. The SKF converges faster

to censored measurements in the occluded regions near samples 1140 for example,
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and erratic behavior when the true value is is near an occluded region. The erratic

behavior near samples 1250-1280 is caused by the significant number of measurements

that jump to the censoring limit, which the SKF treats as true measurements. The

KFIM jumps from uncensored region to uncensored region because it only observes

uncensored measurements, meanwhile the state error covariance increases with each

missed measurement. The performance of the particle filter, run with 100 particles,

and the Tobit Kalman filter are very similar. It is important to note that when there is

a long duration of uncensored measurements both the estimates of the Tobit Kalman

filter and the particle filter converge to the center of the occluded region since this is

the chosen threshold value.

6.3.2 2D Occlusion Results

In this section we will present a simulation using the statistics and state space

model in Chapter 3 to compare the Tobit Kalman filter to the the particle filter for

spatial tracking. The particle filter is run with 100 particles in this example. In Figure

6.12 we have disturbance with standard deviation .2 soQ = .22I2×2 , measurement noise

σ = 10, Ψ0 = I4×4the dampening factor, α = .99, the initial conditions xk = [0 0 0 0]T

for the trackers and simulated data. For visual purposes, the frames are organized as

follows, frames 1 and 2 represent the first 1− M
6

and 1− M
3

, frames 3 and 4 represent

samples M
3
− M

2
and M

3
− 2M

3
, and frames 5 and 6 represent samples 2M

3
− 5M

6
and

2M
3
−M . The Tobit Kalman filter will converge to the center of the occlusion if there is

a continuous stream of occluded measurements. In the example in Figure 6.12, censored

measurements do not cause the Tobit Kalman filter to drift from the actual values, see

frame 5, where the state passes through the occluded region and the Tobit Kalman

filter does not preemptively drift to the center of the occlusion even though there are

several measurements at this point. The particle filter fails immediately and is unable

to recover. This failure is due to the fact that the particle filter is a stochastic approach

and has a degeneracy problem. The particle filter often fails when the motion abruptly

changes, and the weighting function is not able to produce particles with high weights
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for the measurements received. Increasing the number of particles will decrease the

probability of failure occurring. In Figure 6.13 we have the same simulation, but in

this case the particle filter is able to track throughout the simulation. In frame 2, the

Tobit Kalman filter is outperforming the particle filter in the occlusion, and in frames

5 and 6 the true values are changing direction several times within the occlusion with

respect to the number of samples so the trackers are not performing well.

In Figure 6.14 the Tobit Kalman filter is shown to be unbiased with a constant

value in a censored region. The measurement noise has σ = 40 and the initial conditions

for the Tobit Kalman filter and the particle filter are x0 = [−100; 0;−100; 0], with the

true state being xk = [50; 0; 50; 0]. The particle filter is biased in this example, as it

converges to a value that is not xk, whereas the Tobit Kalman filter converges to the

true value.

89



www.manaraa.com

Figure 6.4: Experiment 2 with too few particles: Constant value below the censoring
limit, the particle filter is run with 10 particles.
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Figure 6.5: Comparison of particle filter, Tobit Kalman filter, SKF and KFIM in
estimating a random walk signal near the censoring limit
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Figure 6.6: Comparison of particle filter, Tobit Kalman filter, SKF and KFIM in
estimating a sinusoidal signal with small processes noise around the cen-
soring limit
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Figure 6.7: Comparison of particle filter, Tobit Kalman filter, SKF and KFIM in esti-
mating a sinusoidal signal with large processes noise around the censoring
limit
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Figure 6.8: RMS error and time comparison of the Tobit Kalman filter and the
particle filter. Statistics shown with 50 sets of simulated data.
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Figure 6.9: Sinusoidal example comparing the EKF, UKF and the Tobit Kalman
filter. State estimates plotted with the state error covariance and mea-
surements
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Figure 6.10: Random walk comparing the EKF, UKF and the Tobit Kalman filter.
State estimates plotted with the state error covariance and measure-
ments
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Figure 6.11: Random walk example comparing the particle filter, Tobit Kalman filter,
SKF and KFIM with 1D occlusions
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Figure 6.12: 2D spatial random walk comparing the particle filter and Tobit Kalman
filter with one occlusion. Particle filter fails.
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Figure 6.13: 2D spatial random walk comparing the particle filter and Tobit Kalman
filter with one occlusion. Particle filter does not fail but suffers latency.
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Figure 6.14: 2D spatial stationary system comparing the particle filter and Tobit
Kalman filter with one occlusion.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation a novel adaptation of the Kalman filter for Tobit type 1 cen-

sored measurements is presented, which we call the Tobit Kalman filter. The resulting

formulation provides an unbiased estimate of the state even when a high proportion

of the measurements are censored. A linear, recursive estimator for censored data was

derived using the assumption that the probability of the measurement being censored

or not censored is predictable. The result of this assumption is that the a priori esti-

mate of the state can be used to calculate the probability of being censored, and as a

result, the Tobit Kalman filter innovation and gain.

The behavior of the Tobit Kalman filter is compared to five other methods: one

in which the censored values are used as true measurements, another which treats the

censored data points as missing, the extended Kalman filter, the unscented Kalman

filter and the particle filter. The Tobit Kalman filter consistently outperforms four

computationally equivalent filters in situations with moderate censoring. The particle

filter is a preferred estimator for nonlinear models because it has an the advantage that

there are no restrictions on the system model or the distribution. This advantage comes

with a price of higher computational cost. The Tobit Kalman filter often performs

better than the particle filter with much less computational requirements. The particle

filter will perform well with a large number of particles and when there is disturbance in

the model. However, the particle filter suffers from sample degeneracy, causing weights

to collapse to one value.

Censoring is heavily studied in biology in the form of survival models and in

economics with the Tobit model framework. In addition, censored data arises natu-

rally in a number of engineering applications. Applications for the Tobit Kalman filter
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formulation include biochemical measurements with limit-of-detection saturation, inex-

pensive sensors with saturation censoring, visual tracking with camera frame censoring,

and line-of-sight tracking with occlusion. In this dissertation, the Tobit Kalman filter

is derived for left and right censoring, saturation and occlusions type censoring in 1D

and 2D.

7.1 Future Work

The Tobit Kalman filter has the possibility of being implemented in many dif-

ferent applications including biology, control systems, computer vision based tracking,

spatial localization etc. Also, building upon the Tobit type 1 model, one could design

a Tobit Kalman filter for Tobit type 2,3,4 or 5 censoring. As stated in Chapter 1, there

are several engineering applications for different types of Tobit censoring. For example,

any system with state dependent censoring limits could be designed as a Tobit type

2 system. The 2D Tobit Kalman filter for spatial tracking has the heavy dependence

in measurement noise due to the cross dependence in the x and y directions. This

dependence is cause to pursue a Tobit Type 2 model, which allows for latent variable

censoring dependence.

In the following section, the very important application of categorical data is

briefly discussed. The categorical data problem occurs in biology and social sciences

in the form of surveys or polls, and in engineering in the form of quantization.

7.1.1 Categorical Data

In many biological and social applications, categorical data is used to make

inferences on public health [78]. The Tobit Kalman filter can be applied to categorical

data if all the data is assumed to be censored and each censoring region is known. For

N bin or categorical responses,The categorical model is,
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xk = Axk−1 + vk

y∗k = Cxk + wk

yk =



M(∞, Thigh,1), Cxk + wk > Thigh,1

M(Thigh,1, Tlow,1), Tlow,1 < Cxk + wk < Thigh,1

M(Tlow,1, Thigh,2), Thigh,2 < Cxk + wk < Tlow,1

M(Thigh,2, Tlow,2), Tlow,2 < Cxk + wk < Thigh,2
...

M(Tlow,N ,−∞), Cxk + wk < Tlow,N

Where M(α, β) represents the censored measurement when the latent measure-

ment is between the values α and β. The probability distribution of the measurement

is,

fc(yk|R,xk|k−1) =



∆k,1

∫∞
Tlow,1

f(yk|R,xk|k−1)dyk, y∗k > Thigh,1

∆k,1

∫ Thigh,1
Tlow,1

f(yk|R,xk|k−1)dyk Tlow,1 < y∗k < Thigh,1

∆k,1

∫ Tlow,1
Thigh,2

f(yk|R,xk|k−1)dyk, Thigh,2 < y∗k < Tlow,1

∆k,2

∫ Thigh,2
Tlow,2

f(yk|R,xk|k−1)dyk Tlow,2 < y∗k < Thigh,2
...

∆k,1

∫ Thigh,1
−∞ f(yk|R,xk|k−1)dyk y∗k < Tlow,N

With ∆k,1 = δ(yk −M(Thigh,1, Tlow,1)), the Kronecker delta function.

For a binary measurement application, such as a yes/no questionnaire where

the latent variable is continuous the Tobit Kalman estimator has the possibility to give

better estimates to answers of “how are you feeling today?” or “What color do you

see, red or blue?” when the answers are binary and a system model is given. The

measurement model contains two bins of categorical responses represented as,

yk =

 M(∞, Thigh,1), Cxk + wk > T

M(Tlow,N ,−∞), Cxk + wk < T

With distribution,
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fc(yk|R,xk|k−1) =

 ∆k,1

∫∞
T
f(yk|R,xk|k−1)dyk, y∗k > T

∆k,2

∫ T
−∞ f(yk|R,xk|k−1)dyk y∗k < T

The expected value of the measurement given the state estimate is,

E(yk) = P (Cxk > T )E(yk|Cxk > T ) + P (Cxk < T )E(yk|Cxk < T )

Where E(yk|Cxk > T )M(Tlow,N ,−∞) and E(yk|Cxk > T ) = M(∞, Thigh,1) are

the censored measurements or binary values. The numeric value representing a yes/no

response does not have a censored data value as with the one sided censoring, so finding

the Tobit Kalman gain, and innovation will be difficult. The complete formulation for

the categorical data is left for future work.
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Appendix A

USEFUL INTEGRALS

In this section we will list some useful integrals for Tobit Model statistics. The

relationship between the probability distribution and the cumulative distribution func-

tion is,

∫ B

A

φ(x) dx = Φ(B)− Φ(A)

The following two integrals are used to calculate the mean and variance,

∫
xφ(

x− µx
σ

) dx = −σ2φ(
x− µx
σ

) + σµxΦ(
x− µx
σ

)

∫
x2φ(

x− µx
σ

) dx = σ2(µ2
x + 1)Φ(

x− µx
σ

)− σ2(µx + x)φ(
x− µx
σ

)

For the two dimensional case, since the two dimemsions are independent we

have the useful property φ(x, y) = φ(x)φ(y), so that,

∫ B

A

∫ D

C

φ(x, y) dx dy = Φ(D)− Φ(C)

∫ B

A

φ(x) dx = (Φ(D)− Φ(C))(Φ(B)− Φ(A))

A, B, C and D do not depend on x, y.
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Appendix B

DERIVATION OF RỸỸK

The derivation of Rỹỹk
is straight forward given assumption 1. Recall,

Rỹỹk
= E(ỹkỹT

k ) (B.1)

and that,

ỹk = pk(Cxk + vk) + (Im×m − pk)Γ− E(yk) (B.2)

The value of E(yk) is,

E(yk) = Φ(Cxk|k−1 − Γ,Σ)[Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ)] + Φ(Γ−Cxk|k−1,Σ)Γ

(B.3)

Where,

Φ(Cxk|k−1 − Γ,Σ) = Diag


Φ(

Cxk|k−1(1)−γ(1)

σ(1)
)

Φ(
Cxk|k−1(2)−γ(2)

σ(2)
)

...

Φ(
Cxk|k−1(m)−γ(m)

σ(m)
)

 . (B.4)

and Φ(Cxk|k−1 − Γ,Σ) = Im×m −Φ(Γ−Cxk|k−1,Σ).

Γ =


γ(1)

γ(2)
...

γ(m)

 . (B.5)
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Σ is a diagonal matrix representing the measurement noise for each measure-

ment yk, without censoring.

Σ = Diag


σ(1)

σ(2)
...

σ(m)

 . (B.6)

The matrix form of the inverse mills ratio,

Λ(Γ−Cxk,Σ) =


λ(γ(1)− Cxk|k−1(1), σ(1))

λ(γ(2)− Cxk|k−1(2), σ(2))
...

λ(γ(m)− Cxk|k−1(m), σ(m))

 . (B.7)

Using the expanded version of variance, that E((x−E(x))2) = E(x2)−E(x)2,

E(pk(Cxk + vk) + (Im×m − pk)Γ) = E(yk) we can reduce Equation B.1 to,

Rỹỹk
= E((pk(Cxk + vk) + (Im×m − pk)Γ)(pk(Cxk + vk) + (Im×m − pk)Γ)T)

−E(yk)E(yk)T

(B.8)

We will next derive the terms in Equation B.8, startingwithE(yk)E(yk)T,

E(yk)E(yk)T =

Φ(Cxk|k−1 − Γ,Σ)(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))

(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))TΦ(Cxk|k−1 − Γ,Σ)

+Φ(Cxk|k−1 − Γ,Σ)(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))ΓTΦ(Γ−Cxk|k−1,Σ)

+Φ(Γ−Cxk|k−1,Σ)Γ(Cxk|k−1 + ΣΛ(Γ−Cxk,Σ))TΦ(Cxk|k−1 − Γ,Σ)

+Φ(Γ−Cxk|k−1,Σ)ΓΓTΦ(Γ−Cxk|k−1,Σ)

(B.9)
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and the first term of Equation B.8 is,

(pk(Cxk + vk) + (Im×m − pk)Γ)(pk(Cxk + vk) + (Im×m − pk)Γ)T =

(pk(Cxk + vk)(Cxk + vk)Tpk + pk(Cxk + vk)ΓT(Im×m − pk)

+(Im×m − pk)Γ(Cxk + vk)Tpk

+(Im×m − pk)ΓΓT(Im×m − pk)

(B.10)

using assumption 1, and,

E(pk(Cxk + vk)) = Φ(Cxk|k−1 − Γ,Σ)(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1Σ)) (B.11)

E(pk(Cxk + vk)ΓT(Im×m − pk)) =

Φ(Cxk|k−1 − Γ,Σ)(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))ΓTΦ(Γ−Cxk,Σ)
(B.12)

E((Im×m − pk)Γ(Cxk + vk)Tpk) =

Φ(Γ−Cxk|k−1,Σ)Γ(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))TΦ(Cxk|k−1 − Γ,Σ)
(B.13)

E((Im×m − pk)ΓΓT(Im×m − pk)) =

Φ(Γ−Cxk|k−1,Σ)ΓΓTΦ(Γ−Cxk|k−1,Σ)
(B.14)

Subtracting Equations B.9 and B.10, and using Equations B.12,B.13,B.14 we

are left with,

Rỹỹk
= E(pk(Cxk + vk)(Cxk + vk)Tpk)

−Φ(Cxk|k−1 − Γ,Σ)(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))

(Cxk|k−1 + ΣΛ(Γ−Cxk|k−1,Σ))TΦ(Cxk|k−1 − Γ,Σ)

(B.15)

The cross terms cancel and E(pk) = Φ(Cxk|k−1 − Γ,Σ) as before so that,

Rỹỹk
= E(pk)(CE((xk − xk|k−1)(xk − xk|k−1)T)CTE(pk)T

−E(pk(vk −ΣΛ(Γ−Cxk|k−1,Σ))(vk −ΣΛ(Γ−Cxk|k−1,Σ))TpT
k )

= E(pk)CΨk|k−1CTE(pk)T + Rk

(B.16)
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